Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58364 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ 1.4294 1.6978 0.8419 [X:[], M:[0.7823, 1.1613, 0.7613], q:[0.3892, 0.4102], qb:[0.4285, 0.3721], phi:[0.4]] [X:[], M:[[1, 0, 1], [-1, -1, 0], [-1, -1, 0]], q:[[-1, -1, -1], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[0, 0, 0]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }M_{3}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$ ${}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ -2 2*t^2.28 + 2*t^2.35 + t^2.4 + t^2.45 + 2*t^3.48 + t^3.55 + t^3.6 + 3*t^4.57 + 4*t^4.63 + 3*t^4.68 + 3*t^4.69 + t^4.72 + 2*t^4.74 + 3*t^4.75 + t^4.77 + 3*t^4.8 + t^4.83 + 2*t^4.85 + t^4.89 + t^4.91 + t^4.92 + 4*t^5.77 + 5*t^5.83 + 4*t^5.88 + 2*t^5.89 + t^5.92 + t^5.94 + 3*t^5.95 + t^5.97 - 2*t^6. + t^6.03 + t^6.05 - t^6.06 + t^6.09 - t^6.17 + 4*t^6.85 + 6*t^6.91 + t^6.95 + 8*t^6.97 + 6*t^6.98 + 2*t^7. + 3*t^7.02 + 9*t^7.03 + 4*t^7.04 + 2*t^7.05 + 2*t^7.06 + 8*t^7.08 + 6*t^7.09 + t^7.1 + 3*t^7.11 + 2*t^7.12 + 4*t^7.14 + 6*t^7.15 + 4*t^7.17 + 2*t^7.18 + 2*t^7.19 + 5*t^7.2 + t^7.22 + 3*t^7.23 + 3*t^7.25 + t^7.26 + 3*t^7.29 + 2*t^7.31 + t^7.34 + t^7.36 + t^7.46 + 6*t^8.05 + 9*t^8.11 + 9*t^8.17 + 8*t^8.18 + 3*t^8.2 + 2*t^8.22 + 11*t^8.23 + 3*t^8.24 + 3*t^8.25 + 2*t^8.26 - t^8.28 + 6*t^8.29 + 4*t^8.31 + t^8.32 + 4*t^8.34 - 5*t^8.35 + 3*t^8.37 + 2*t^8.38 + t^8.39 - 2*t^8.41 + t^8.43 - 4*t^8.45 - t^8.46 - 2*t^8.48 + t^8.49 + t^8.51 - 3*t^8.52 - t^8.54 - 2*t^8.57 - t^8.6 - t^8.62 - t^4.2/y - t^5.4/y - (2*t^6.48)/y - (2*t^6.55)/y - t^6.6/y - t^6.65/y + t^7.57/y + (4*t^7.63)/y - t^7.68/y + t^7.69/y + (2*t^7.74)/y + t^7.8/y + t^7.85/y + t^7.92/y + t^8.77/y + (2*t^8.83)/y - t^8.89/y - t^4.2*y - t^5.4*y - 2*t^6.48*y - 2*t^6.55*y - t^6.6*y - t^6.65*y + t^7.57*y + 4*t^7.63*y - t^7.68*y + t^7.69*y + 2*t^7.74*y + t^7.8*y + t^7.85*y + t^7.92*y + t^8.77*y + 2*t^8.83*y - t^8.89*y (2*t^2.28)/(g1*g2) + 2*g1*g3*t^2.35 + t^2.4 + t^2.45/(g1*g3) + (2*t^3.48)/(g1*g2) + g1*g3*t^3.55 + t^3.6 + (3*t^4.57)/(g1^2*g2^2) + (4*g3*t^4.63)/g2 + (3*t^4.68)/(g1*g2) + 3*g1^2*g3^2*t^4.69 + g2*g3^2*t^4.72 + (2*t^4.74)/(g1^2*g2*g3) + 3*g1*g3*t^4.75 + t^4.77/(g1*g2^2*g3^2) + 3*t^4.8 + (g1*t^4.83)/(g2*g3) + (2*t^4.85)/(g1*g3) + g2^2*g3*t^4.89 + t^4.91/(g1^2*g3^2) + g1*g2*t^4.92 + (4*t^5.77)/(g1^2*g2^2) + (5*g3*t^5.83)/g2 + (4*t^5.88)/(g1*g2) + 2*g1^2*g3^2*t^5.89 + g2*g3^2*t^5.92 + t^5.94/(g1^2*g2*g3) + 3*g1*g3*t^5.95 + t^5.97/(g1*g2^2*g3^2) - 2*t^6. + (g1*t^6.03)/(g2*g3) + t^6.05/(g1*g3) - g1^2*g2*g3*t^6.06 + g2^2*g3*t^6.09 - (g2*t^6.17)/g3 + (4*t^6.85)/(g1^3*g2^3) + (6*g3*t^6.91)/(g1*g2^2) + g3^3*t^6.95 + (8*t^6.97)/(g1^2*g2^2) + (6*g1*g3^2*t^6.98)/g2 + (2*g3^2*t^7.)/g1 + (3*t^7.02)/(g1^3*g2^2*g3) + (9*g3*t^7.03)/g2 + 4*g1^3*g3^3*t^7.04 + (2*t^7.05)/(g1^2*g2^3*g3^2) + 2*g1*g2*g3^3*t^7.06 + (8*t^7.08)/(g1*g2) + 6*g1^2*g3^2*t^7.09 + t^7.1/(g1^3*g2^3*g3^3) + (3*t^7.11)/(g2^2*g3) + 2*g2*g3^2*t^7.12 + (4*t^7.14)/(g1^2*g2*g3) + 6*g1*g3*t^7.15 + (2*t^7.17)/(g1*g2^2*g3^2) + (2*g2*g3*t^7.17)/g1 + (2*g1^2*t^7.18)/g2 + (2*t^7.19)/(g1^3*g2*g3^2) + 5*t^7.2 + t^7.22/(g1^2*g2^2*g3^3) + (2*g1*t^7.23)/(g2*g3) + g1*g2^2*g3^2*t^7.23 + (3*t^7.25)/(g1*g3) + g1^2*g2*g3*t^7.26 + g1^3*t^7.29 + 2*g2^2*g3*t^7.29 + (2*t^7.31)/(g1^2*g3^2) + (g2^2*t^7.34)/g1 + t^7.36/(g1^3*g3^3) + g2^3*t^7.46 + (6*t^8.05)/(g1^3*g2^3) + (9*g3*t^8.11)/(g1*g2^2) + (9*t^8.17)/(g1^2*g2^2) + (8*g1*g3^2*t^8.18)/g2 + (3*g3^2*t^8.2)/g1 + (2*t^8.22)/(g1^3*g2^2*g3) + (11*g3*t^8.23)/g2 + 3*g1^3*g3^3*t^8.24 + (3*t^8.25)/(g1^2*g2^3*g3^2) + 2*g1*g2*g3^3*t^8.26 - t^8.28/(g1*g2) + 6*g1^2*g3^2*t^8.29 + (4*t^8.31)/(g2^2*g3) + g2*g3^2*t^8.32 + (4*t^8.34)/(g1^2*g2*g3) - 5*g1*g3*t^8.35 + t^8.37/(g1*g2^2*g3^2) + (2*g2*g3*t^8.37)/g1 + (2*g1^2*t^8.38)/g2 + t^8.39/(g1^3*g2*g3^2) - 2*g1^3*g2*g3^2*t^8.41 + (g1*t^8.43)/(g2*g3) - (4*t^8.45)/(g1*g3) - g1^2*g2*g3*t^8.46 - (2*t^8.48)/(g2*g3^2) + g2^2*g3*t^8.49 + t^8.51/(g1^2*g3^2) - 3*g1*g2*t^8.52 - (g1^2*t^8.54)/g3 - (2*g2*t^8.57)/g3 - g1*g2^3*g3*t^8.6 - (g2*t^8.62)/(g1*g3^2) - t^4.2/y - t^5.4/y - (2*t^6.48)/(g1*g2*y) - (2*g1*g3*t^6.55)/y - t^6.6/y - t^6.65/(g1*g3*y) + t^7.57/(g1^2*g2^2*y) + (4*g3*t^7.63)/(g2*y) - t^7.68/(g1*g2*y) + (g1^2*g3^2*t^7.69)/y + (2*t^7.74)/(g1^2*g2*g3*y) + t^7.8/y + t^7.85/(g1*g3*y) + (g1*g2*t^7.92)/y + t^8.77/(g1^2*g2^2*y) + (2*g3*t^8.83)/(g2*y) - (g1^2*g3^2*t^8.89)/y - t^4.2*y - t^5.4*y - (2*t^6.48*y)/(g1*g2) - 2*g1*g3*t^6.55*y - t^6.6*y - (t^6.65*y)/(g1*g3) + (t^7.57*y)/(g1^2*g2^2) + (4*g3*t^7.63*y)/g2 - (t^7.68*y)/(g1*g2) + g1^2*g3^2*t^7.69*y + (2*t^7.74*y)/(g1^2*g2*g3) + t^7.8*y + (t^7.85*y)/(g1*g3) + g1*g2*t^7.92*y + (t^8.77*y)/(g1^2*g2^2) + (2*g3*t^8.83*y)/g2 - g1^2*g3^2*t^8.89*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57353 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ 1.4112 1.6637 0.8482 [M:[0.7823, 1.1779], q:[0.3977, 0.402], qb:[0.4201, 0.3803], phi:[0.4]] t^2.334 + 2*t^2.347 + t^2.4 + t^2.453 + 2*t^3.534 + t^3.547 + t^3.6 + t^3.666 + t^4.668 + 2*t^4.681 + 3*t^4.694 + 2*t^4.734 + t^4.742 + 3*t^4.747 + t^4.787 + t^4.792 + 3*t^4.8 + t^4.805 + 2*t^4.853 + t^4.861 + t^4.866 + t^4.906 + 2*t^5.868 + 4*t^5.881 + 2*t^5.894 + 3*t^5.934 + t^5.942 + 3*t^5.947 + t^5.987 + t^5.992 - t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail