Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58362 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.4272 | 1.691 | 0.844 | [X:[], M:[0.8, 1.1779, 0.8], q:[0.389, 0.411], qb:[0.411, 0.389], phi:[0.4]] | [X:[], M:[[1, 0, 1], [-1, -1, 0], [-1, 0, -1]], q:[[-1, -1, -1], [1, 0, 0]], qb:[[0, 1, 0], [0, 0, 1]], phi:[[0, 0, 0]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{3}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{3}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ | ${}M_{1}\phi_{1}^{3}$, ${ }M_{3}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ | 2 | t^2.33 + 5*t^2.4 + 2*t^3.53 + t^3.6 + t^3.67 + t^4.67 + 6*t^4.73 + 2*t^4.77 + 17*t^4.8 + 2*t^4.83 + t^4.87 + 2*t^5.87 + 9*t^5.93 + 2*t^5.97 + 2*t^6. + 2*t^6.03 + 3*t^6.07 + t^7. + 9*t^7.07 + 4*t^7.1 + 21*t^7.13 + 12*t^7.17 + 43*t^7.2 + 10*t^7.23 + 3*t^7.27 + 2*t^7.3 + t^7.33 + 2*t^8.2 + 11*t^8.27 + 4*t^8.3 + 24*t^8.33 + 8*t^8.37 - 2*t^8.4 + 4*t^8.43 + 5*t^8.47 + t^8.53 - t^4.2/y - t^5.4/y - t^6.53/y - (5*t^6.6)/y + (3*t^7.73)/y + (7*t^7.8)/y + t^8.87/y + (4*t^8.93)/y - t^4.2*y - t^5.4*y - t^6.53*y - 5*t^6.6*y + 3*t^7.73*y + 7*t^7.8*y + t^8.87*y + 4*t^8.93*y | t^2.33/(g1*g2) + t^2.4 + (2*t^2.4)/(g1*g3) + 2*g1*g3*t^2.4 + (2*t^3.53)/(g1*g2) + t^3.6 + g1*g2*t^3.67 + t^4.67/(g1^2*g2^2) + (2*t^4.73)/(g1*g2) + (2*t^4.73)/(g1^2*g2*g3) + (2*g3*t^4.73)/g2 + t^4.77/(g1*g2^2*g3^2) + g2*g3^2*t^4.77 + 5*t^4.8 + (3*t^4.8)/(g1^2*g3^2) + (3*t^4.8)/(g1*g3) + 3*g1*g3*t^4.8 + 3*g1^2*g3^2*t^4.8 + (g1*t^4.83)/(g2*g3) + g2^2*g3*t^4.83 + g1*g2*t^4.87 + (2*t^5.87)/(g1^2*g2^2) + (3*t^5.93)/(g1*g2) + (3*t^5.93)/(g1^2*g2*g3) + (3*g3*t^5.93)/g2 + t^5.97/(g1*g2^2*g3^2) + g2*g3^2*t^5.97 - 2*t^6. + (2*t^6.)/(g1*g3) + 2*g1*g3*t^6. + (g1*t^6.03)/(g2*g3) + g2^2*g3*t^6.03 + g1*g2*t^6.07 + (g2*t^6.07)/g3 + g1^2*g2*g3*t^6.07 + t^7./(g1^3*g2^3) + (5*t^7.07)/(g1^2*g2^2) + (2*t^7.07)/(g1^3*g2^2*g3) + (2*g3*t^7.07)/(g1*g2^2) + t^7.1/(g1^3*g2^3*g3^3) + t^7.1/(g1^2*g2^3*g3^2) + (g3^2*t^7.1)/g1 + g3^3*t^7.1 + (7*t^7.13)/(g1*g2) + (3*t^7.13)/(g1^3*g2*g3^2) + (4*t^7.13)/(g1^2*g2*g3) + (4*g3*t^7.13)/g2 + (3*g1*g3^2*t^7.13)/g2 + (2*t^7.17)/(g1^2*g2^2*g3^3) + (2*t^7.17)/(g1*g2^2*g3^2) + (2*t^7.17)/(g2^2*g3) + (2*g2*g3*t^7.17)/g1 + 2*g2*g3^2*t^7.17 + 2*g1*g2*g3^3*t^7.17 + 9*t^7.2 + (4*t^7.2)/(g1^3*g3^3) + (5*t^7.2)/(g1^2*g3^2) + (8*t^7.2)/(g1*g3) + 8*g1*g3*t^7.2 + 5*g1^2*g3^2*t^7.2 + 4*g1^3*g3^3*t^7.2 + (2*g1^2*t^7.23)/g2 + (2*g2^2*t^7.23)/g1 + t^7.23/(g2*g3^2) + (2*g1*t^7.23)/(g2*g3) + 2*g2^2*g3*t^7.23 + g1*g2^2*g3^2*t^7.23 + g1*g2*t^7.27 + (g2*t^7.27)/g3 + g1^2*g2*g3*t^7.27 + g1^3*t^7.3 + g2^3*t^7.3 + g1^2*g2^2*t^7.33 + (2*t^8.2)/(g1^3*g2^3) + (5*t^8.27)/(g1^2*g2^2) + (3*t^8.27)/(g1^3*g2^2*g3) + (3*g3*t^8.27)/(g1*g2^2) + (2*t^8.3)/(g1^2*g2^3*g3^2) + (2*g3^2*t^8.3)/g1 + (4*t^8.33)/(g1*g2) + (4*t^8.33)/(g1^3*g2*g3^2) + (6*t^8.33)/(g1^2*g2*g3) + (6*g3*t^8.33)/g2 + (4*g1*g3^2*t^8.33)/g2 + t^8.37/(g1^2*g2^2*g3^3) + t^8.37/(g1*g2^2*g3^2) + (2*t^8.37)/(g2^2*g3) + (2*g2*g3*t^8.37)/g1 + g2*g3^2*t^8.37 + g1*g2*g3^3*t^8.37 + 2*t^8.4 + (3*t^8.4)/(g1^2*g3^2) - (5*t^8.4)/(g1*g3) - 5*g1*g3*t^8.4 + 3*g1^2*g3^2*t^8.4 + (g1^2*t^8.43)/g2 + (g2^2*t^8.43)/g1 + (g1*t^8.43)/(g2*g3) + g2^2*g3*t^8.43 + g1*g2*t^8.47 + (g2*t^8.47)/(g1*g3^2) + (g2*t^8.47)/g3 + g1^2*g2*g3*t^8.47 + g1^3*g2*g3^2*t^8.47 + g1^2*g2^2*t^8.53 - t^4.2/y - t^5.4/y - t^6.53/(g1*g2*y) - t^6.6/y - (2*t^6.6)/(g1*g3*y) - (2*g1*g3*t^6.6)/y - t^7.73/(g1*g2*y) + (2*t^7.73)/(g1^2*g2*g3*y) + (2*g3*t^7.73)/(g2*y) + (3*t^7.8)/y + t^7.8/(g1^2*g3^2*y) + t^7.8/(g1*g3*y) + (g1*g3*t^7.8)/y + (g1^2*g3^2*t^7.8)/y + t^8.87/(g1^2*g2^2*y) + (2*t^8.93)/(g1^2*g2*g3*y) + (2*g3*t^8.93)/(g2*y) - t^4.2*y - t^5.4*y - (t^6.53*y)/(g1*g2) - t^6.6*y - (2*t^6.6*y)/(g1*g3) - 2*g1*g3*t^6.6*y - (t^7.73*y)/(g1*g2) + (2*t^7.73*y)/(g1^2*g2*g3) + (2*g3*t^7.73*y)/g2 + 3*t^7.8*y + (t^7.8*y)/(g1^2*g3^2) + (t^7.8*y)/(g1*g3) + g1*g3*t^7.8*y + g1^2*g3^2*t^7.8*y + (t^8.87*y)/(g1^2*g2^2) + (2*t^8.93*y)/(g1^2*g2*g3) + (2*g3*t^8.93*y)/g2 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57353 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ | 1.4112 | 1.6637 | 0.8482 | [M:[0.7823, 1.1779], q:[0.3977, 0.402], qb:[0.4201, 0.3803], phi:[0.4]] | t^2.334 + 2*t^2.347 + t^2.4 + t^2.453 + 2*t^3.534 + t^3.547 + t^3.6 + t^3.666 + t^4.668 + 2*t^4.681 + 3*t^4.694 + 2*t^4.734 + t^4.742 + 3*t^4.747 + t^4.787 + t^4.792 + 3*t^4.8 + t^4.805 + 2*t^4.853 + t^4.861 + t^4.866 + t^4.906 + 2*t^5.868 + 4*t^5.881 + 2*t^5.894 + 3*t^5.934 + t^5.942 + 3*t^5.947 + t^5.987 + t^5.992 - t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y | detail |