Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58359 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$ 1.4112 1.6636 0.8483 [X:[], M:[0.7803, 1.1803], q:[0.3998, 0.3998], qb:[0.4198, 0.3805], phi:[0.4]] [X:[], M:[[-1, 1], [-1, 1]], q:[[-1, -1], [-1, -1]], qb:[[2, 0], [0, 2]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$ ${}\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ 2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ 3 3*t^2.34 + t^2.4 + t^2.46 + 3*t^3.54 + t^3.6 + t^3.66 + 6*t^4.68 + 6*t^4.74 + 6*t^4.8 + 4*t^4.86 + t^4.92 + 8*t^5.88 + 7*t^5.94 + 3*t^6. + 3*t^6.06 + 11*t^7.02 + 20*t^7.08 + 19*t^7.14 + 18*t^7.2 + 8*t^7.26 + 4*t^7.32 + 2*t^7.38 + 15*t^8.22 + 23*t^8.28 + 10*t^8.34 + 11*t^8.4 - t^8.46 + 2*t^8.52 - t^4.2/y - t^5.4/y - (3*t^6.54)/y - t^6.6/y - t^6.66/y + (3*t^7.68)/y - t^7.74/y + (2*t^7.8)/y + t^7.86/y + (3*t^8.88)/y - t^4.2*y - t^5.4*y - 3*t^6.54*y - t^6.6*y - t^6.66*y + 3*t^7.68*y - t^7.74*y + 2*t^7.8*y + t^7.86*y + 3*t^8.88*y (3*g2*t^2.34)/g1 + t^2.4 + (g1*t^2.46)/g2 + (3*g2*t^3.54)/g1 + t^3.6 + (g1*t^3.66)/g2 + (6*g2^2*t^4.68)/g1^2 + (5*g2*t^4.74)/g1 + g1^2*g2^4*t^4.74 + 4*t^4.8 + (2*t^4.8)/(g1^3*g2^3) + (3*g1*t^4.86)/g2 + g1^4*g2^2*t^4.86 + (g1^2*t^4.92)/g2^2 + (8*g2^2*t^5.88)/g1^2 + (6*g2*t^5.94)/g1 + g1^2*g2^4*t^5.94 + t^6. + (2*t^6.)/(g1^3*g2^3) + (2*g1*t^6.06)/g2 + g1^4*g2^2*t^6.06 + (10*g2^3*t^7.02)/g1^3 + g2^6*t^7.02 + (17*g2^2*t^7.08)/g1^2 + 3*g1*g2^5*t^7.08 + (5*t^7.14)/(g1^4*g2^2) + (12*g2*t^7.14)/g1 + 2*g1^2*g2^4*t^7.14 + 10*t^7.2 + (6*t^7.2)/(g1^3*g2^3) + 2*g1^3*g2^3*t^7.2 + t^7.26/(g1^2*g2^4) + (5*g1*t^7.26)/g2 + 2*g1^4*g2^2*t^7.26 + (3*g1^2*t^7.32)/g2^2 + g1^5*g2*t^7.32 + g1^6*t^7.38 + (g1^3*t^7.38)/g2^3 + (15*g2^3*t^8.22)/g1^3 + (19*g2^2*t^8.28)/g1^2 + 4*g1*g2^5*t^8.28 + (7*t^8.34)/(g1^4*g2^2) + (2*g2*t^8.34)/g1 + g1^2*g2^4*t^8.34 + 7*t^8.4 + (2*t^8.4)/(g1^3*g2^3) + 2*g1^3*g2^3*t^8.4 - t^8.46/(g1^2*g2^4) - (g1*t^8.46)/g2 + g1^4*g2^2*t^8.46 + (2*g1^2*t^8.52)/g2^2 - t^4.2/y - t^5.4/y - (3*g2*t^6.54)/(g1*y) - t^6.6/y - (g1*t^6.66)/(g2*y) + (3*g2^2*t^7.68)/(g1^2*y) - (g2*t^7.74)/(g1*y) + (2*t^7.8)/y + (g1*t^7.86)/(g2*y) + (3*g2^2*t^8.88)/(g1^2*y) - t^4.2*y - t^5.4*y - (3*g2*t^6.54*y)/g1 - t^6.6*y - (g1*t^6.66*y)/g2 + (3*g2^2*t^7.68*y)/g1^2 - (g2*t^7.74*y)/g1 + 2*t^7.8*y + (g1*t^7.86*y)/g2 + (3*g2^2*t^8.88*y)/g1^2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57353 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ 1.4112 1.6637 0.8482 [M:[0.7823, 1.1779], q:[0.3977, 0.402], qb:[0.4201, 0.3803], phi:[0.4]] t^2.334 + 2*t^2.347 + t^2.4 + t^2.453 + 2*t^3.534 + t^3.547 + t^3.6 + t^3.666 + t^4.668 + 2*t^4.681 + 3*t^4.694 + 2*t^4.734 + t^4.742 + 3*t^4.747 + t^4.787 + t^4.792 + 3*t^4.8 + t^4.805 + 2*t^4.853 + t^4.861 + t^4.866 + t^4.906 + 2*t^5.868 + 4*t^5.881 + 2*t^5.894 + 3*t^5.934 + t^5.942 + 3*t^5.947 + t^5.987 + t^5.992 - t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail