Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58355 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ 1.1741 1.392 0.8435 [X:[1.6], M:[0.7567, 1.1567], q:[0.2144, 0.5712], qb:[0.6288, 0.1856], phi:[0.4]] [X:[[0, 0]], M:[[-1, 1], [-1, 1]], q:[[0, -1], [-1, 0]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{1}^{3}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{2}^{2}$ ${}\phi_{1}^{4}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}^{2}\tilde{q}_{2}^{2}$ 2 2*t^2.27 + 2*t^2.4 + 2*t^3.47 + 3*t^3.6 + 2*t^4.2 + 3*t^4.54 + 4*t^4.67 + 5*t^4.8 + 2*t^5.27 + 2*t^5.4 + 2*t^5.53 + 4*t^5.74 + 9*t^5.87 + 2*t^6. - t^6.13 + 4*t^6.47 + 4*t^6.6 + 4*t^6.81 + 9*t^6.94 + 13*t^7.07 + 9*t^7.2 - 3*t^7.33 + 4*t^7.54 + 8*t^7.67 + 6*t^7.8 + 6*t^8.01 + 15*t^8.14 + 10*t^8.27 + 3*t^8.4 - 4*t^8.53 + 10*t^8.74 + 12*t^8.87 - t^4.2/y - t^5.4/y - (2*t^6.47)/y - t^6.6/y + t^7.54/y + t^7.67/y - (2*t^7.8)/y + t^7.93/y + t^8.74/y + (7*t^8.87)/y - t^4.2*y - t^5.4*y - 2*t^6.47*y - t^6.6*y + t^7.54*y + t^7.67*y - 2*t^7.8*y + t^7.93*y + t^8.74*y + 7*t^8.87*y (2*g2*t^2.27)/g1 + 2*t^2.4 + (2*g2*t^3.47)/g1 + 3*t^3.6 + t^4.2/(g1*g2^2) + g1*g2^2*t^4.2 + (3*g2^2*t^4.54)/g1^2 + (4*g2*t^4.67)/g1 + 5*t^4.8 + t^5.27/(g1^2*g2) + g2^3*t^5.27 + t^5.4/(g1*g2^2) + g1*g2^2*t^5.4 + t^5.53/g2^3 + g1^2*g2*t^5.53 + (4*g2^2*t^5.74)/g1^2 + (9*g2*t^5.87)/g1 + 2*t^6. - (g1*t^6.13)/g2 + (2*t^6.47)/(g1^2*g2) + 2*g2^3*t^6.47 + (2*t^6.6)/(g1*g2^2) + 2*g1*g2^2*t^6.6 + (4*g2^3*t^6.81)/g1^3 + (9*g2^2*t^6.94)/g1^2 + (13*g2*t^7.07)/g1 + 9*t^7.2 - (3*g1*t^7.33)/g2 + (2*t^7.54)/g1^3 + (2*g2^4*t^7.54)/g1 + (4*t^7.67)/(g1^2*g2) + 4*g2^3*t^7.67 + (3*t^7.8)/(g1*g2^2) + 3*g1*g2^2*t^7.8 + (6*g2^3*t^8.01)/g1^3 + (15*g2^2*t^8.14)/g1^2 + (10*g2*t^8.27)/g1 + t^8.4 + t^8.4/(g1^2*g2^4) + g1^2*g2^4*t^8.4 - (4*g1*t^8.53)/g2 + (5*t^8.74)/g1^3 + (5*g2^4*t^8.74)/g1 + (6*t^8.87)/(g1^2*g2) + 6*g2^3*t^8.87 - t^4.2/y - t^5.4/y - (2*g2*t^6.47)/(g1*y) - t^6.6/y + (g2^2*t^7.54)/(g1^2*y) + (g2*t^7.67)/(g1*y) - (2*t^7.8)/y + (g1*t^7.93)/(g2*y) + (g2^2*t^8.74)/(g1^2*y) + (7*g2*t^8.87)/(g1*y) - t^4.2*y - t^5.4*y - (2*g2*t^6.47*y)/g1 - t^6.6*y + (g2^2*t^7.54*y)/g1^2 + (g2*t^7.67*y)/g1 - 2*t^7.8*y + (g1*t^7.93*y)/g2 + (g2^2*t^8.74*y)/g1^2 + (7*g2*t^8.87*y)/g1


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
61238 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ 1.1906 1.421 0.8379 [X:[1.6], M:[0.7567, 1.1567, 0.8], q:[0.2144, 0.5712], qb:[0.6288, 0.1856], phi:[0.4]] 2*t^2.27 + 3*t^2.4 + 2*t^3.47 + 2*t^3.6 + 2*t^4.2 + 3*t^4.54 + 6*t^4.67 + 8*t^4.8 + 2*t^5.27 + 2*t^5.4 + 2*t^5.53 + 4*t^5.74 + 9*t^5.87 + 2*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57345 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ + ${ }q_{1}\tilde{q}_{2}X_{1}$ 1.1886 1.4148 0.8401 [X:[1.6], M:[0.7804], q:[0.2065, 0.5869], qb:[0.6131, 0.1935], phi:[0.4]] 2*t^2.341 + 2*t^2.4 + t^2.459 + t^3.541 + 3*t^3.6 + 2*t^4.2 + 3*t^4.682 + 4*t^4.741 + 7*t^4.8 + 2*t^4.859 + t^4.918 + 2*t^5.341 + 2*t^5.4 + 2*t^5.459 + 2*t^5.882 + 7*t^5.941 + 3*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail