Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58352 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ 1.3268 1.5797 0.8399 [X:[], M:[0.8616, 1.0925], q:[0.4206, 0.5897], qb:[0.3178, 0.2719], phi:[0.4]] [X:[], M:[[1, 2], [-2, -1]], q:[[-2, -2], [1, 1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}\tilde{q}_{2}^{3}$ ${2}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ 2}\phi_{1}q_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$ 1 t^2.08 + t^2.22 + t^2.4 + 2*t^2.58 + 2*t^3.28 + t^3.6 + 2*t^3.78 + 2*t^3.92 + t^4.15 + t^4.29 + t^4.43 + 2*t^4.48 + 2*t^4.62 + 2*t^4.66 + 3*t^4.8 + 4*t^4.98 + 2*t^5.12 + 3*t^5.17 + 2*t^5.35 + 2*t^5.49 + 3*t^5.68 + t^5.82 + 5*t^5.86 + t^6. + t^6.05 + t^6.14 + 5*t^6.18 + t^6.23 + 3*t^6.32 + 5*t^6.37 + t^6.46 + 3*t^6.51 + 5*t^6.55 + t^6.65 + 3*t^6.69 + 2*t^6.74 + 2*t^6.83 + 5*t^6.88 + 3*t^7.02 + 8*t^7.06 + 8*t^7.2 + 3*t^7.25 + 7*t^7.38 + t^7.39 + 2*t^7.43 + 2*t^7.52 + 11*t^7.57 + 6*t^7.71 + 9*t^7.75 + 2*t^7.85 + 5*t^7.89 + 5*t^7.94 + t^8.03 + 5*t^8.08 + t^8.12 - t^8.22 + 12*t^8.26 + t^8.31 + t^8.35 + 7*t^8.4 + 9*t^8.45 + 2*t^8.54 + 2*t^8.58 + t^8.59 + 7*t^8.63 + t^8.68 + 3*t^8.72 + 16*t^8.77 + 2*t^8.82 + t^8.86 + 10*t^8.91 + 15*t^8.95 - t^4.2/y - t^5.4/y - t^6.28/y - t^6.42/y - t^6.6/y - (2*t^6.78)/y + t^7.29/y - t^7.48/y + t^7.62/y + (2*t^7.66)/y + t^7.8/y + t^8.17/y + t^8.35/y + t^8.49/y - t^8.63/y + (4*t^8.86)/y - t^4.2*y - t^5.4*y - t^6.28*y - t^6.42*y - t^6.6*y - 2*t^6.78*y + t^7.29*y - t^7.48*y + t^7.62*y + 2*t^7.66*y + t^7.8*y + t^8.17*y + t^8.35*y + t^8.49*y - t^8.63*y + 4*t^8.86*y t^2.08/(g1^2*g2) + t^2.22/(g1*g2^2) + t^2.4 + 2*g1*g2^2*t^2.58 + (2*t^3.28)/(g1^2*g2) + t^3.6 + 2*g1*g2^2*t^3.78 + 2*g1^2*g2*t^3.92 + t^4.15/(g1^4*g2^2) + t^4.29/(g1^3*g2^3) + t^4.43/(g1^2*g2^4) + (2*t^4.48)/(g1^2*g2) + (2*t^4.62)/(g1*g2^2) + (2*g2*t^4.66)/g1 + 3*t^4.8 + 4*g1*g2^2*t^4.98 + 2*g1^2*g2*t^5.12 + 3*g1^2*g2^4*t^5.17 + (2*t^5.35)/(g1^4*g2^2) + (2*t^5.49)/(g1^3*g2^3) + (3*t^5.68)/(g1^2*g2) + t^5.82/(g1*g2^2) + (5*g2*t^5.86)/g1 + t^6. + g2^3*t^6.05 + (g1*t^6.14)/g2 + 5*g1*g2^2*t^6.18 + t^6.23/(g1^6*g2^3) + 3*g1^2*g2*t^6.32 + t^6.37/(g1^5*g2^4) + 4*g1^2*g2^4*t^6.37 + g1^3*t^6.46 + t^6.51/(g1^4*g2^5) + 2*g1^3*g2^3*t^6.51 + (5*t^6.55)/(g1^4*g2^2) + t^6.65/(g1^3*g2^6) + (3*t^6.69)/(g1^3*g2^3) + (2*t^6.74)/g1^3 + (2*t^6.83)/(g1^2*g2^4) + (5*t^6.88)/(g1^2*g2) + (3*t^7.02)/(g1*g2^2) + (8*g2*t^7.06)/g1 + 8*t^7.2 + 3*g2^3*t^7.25 + 7*g1*g2^2*t^7.38 + t^7.39/(g1^6*g2^6) + (2*t^7.43)/(g1^6*g2^3) + 2*g1^2*g2*t^7.52 + (2*t^7.57)/(g1^5*g2^4) + 9*g1^2*g2^4*t^7.57 + (2*t^7.71)/(g1^4*g2^5) + 4*g1^3*g2^3*t^7.71 + (5*t^7.75)/(g1^4*g2^2) + 4*g1^3*g2^6*t^7.75 + 2*g1^4*g2^2*t^7.85 + (5*t^7.89)/(g1^3*g2^3) + (5*t^7.94)/g1^3 + t^8.03/(g1^2*g2^4) + (5*t^8.08)/(g1^2*g2) + (g2^2*t^8.12)/g1^2 - t^8.22/(g1*g2^2) + (12*g2*t^8.26)/g1 + t^8.31/(g1^8*g2^4) + t^8.35/g2^3 + 7*t^8.4 + t^8.45/(g1^7*g2^5) + 8*g2^3*t^8.45 + (2*g1*t^8.54)/g2 + 2*g1*g2^2*t^8.58 + t^8.59/(g1^6*g2^6) + (5*t^8.63)/(g1^6*g2^3) + 2*g1*g2^5*t^8.63 + (g1^2*t^8.68)/g2^2 + t^8.72/(g1^5*g2^7) + 2*g1^2*g2*t^8.72 + (5*t^8.77)/(g1^5*g2^4) + 11*g1^2*g2^4*t^8.77 + (2*t^8.82)/(g1^5*g2) + t^8.86/(g1^4*g2^8) + (2*t^8.91)/(g1^4*g2^5) + 8*g1^3*g2^3*t^8.91 + (9*t^8.95)/(g1^4*g2^2) + 6*g1^3*g2^6*t^8.95 - t^4.2/y - t^5.4/y - t^6.28/(g1^2*g2*y) - t^6.42/(g1*g2^2*y) - t^6.6/y - (2*g1*g2^2*t^6.78)/y + t^7.29/(g1^3*g2^3*y) - t^7.48/(g1^2*g2*y) + t^7.62/(g1*g2^2*y) + (2*g2*t^7.66)/(g1*y) + t^7.8/y + (g1^2*g2^4*t^8.17)/y + t^8.35/(g1^4*g2^2*y) + t^8.49/(g1^3*g2^3*y) - t^8.63/(g1^2*g2^4*y) + (4*g2*t^8.86)/(g1*y) - t^4.2*y - t^5.4*y - (t^6.28*y)/(g1^2*g2) - (t^6.42*y)/(g1*g2^2) - t^6.6*y - 2*g1*g2^2*t^6.78*y + (t^7.29*y)/(g1^3*g2^3) - (t^7.48*y)/(g1^2*g2) + (t^7.62*y)/(g1*g2^2) + (2*g2*t^7.66*y)/g1 + t^7.8*y + g1^2*g2^4*t^8.17*y + (t^8.35*y)/(g1^4*g2^2) + (t^8.49*y)/(g1^3*g2^3) - (t^8.63*y)/(g1^2*g2^4) + (4*g2*t^8.86*y)/g1


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57353 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ 1.4112 1.6637 0.8482 [M:[0.7823, 1.1779], q:[0.3977, 0.402], qb:[0.4201, 0.3803], phi:[0.4]] t^2.334 + 2*t^2.347 + t^2.4 + t^2.453 + 2*t^3.534 + t^3.547 + t^3.6 + t^3.666 + t^4.668 + 2*t^4.681 + 3*t^4.694 + 2*t^4.734 + t^4.742 + 3*t^4.747 + t^4.787 + t^4.792 + 3*t^4.8 + t^4.805 + 2*t^4.853 + t^4.861 + t^4.866 + t^4.906 + 2*t^5.868 + 4*t^5.881 + 2*t^5.894 + 3*t^5.934 + t^5.942 + 3*t^5.947 + t^5.987 + t^5.992 - t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail