Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5829 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ M_3M_5$ + $ M_3M_7$ + $ \phi_1q_2^2$ + $ M_8q_1\tilde{q}_2$ + $ M_4M_9$ 0.6738 0.8564 0.7868 [X:[], M:[0.7179, 1.0407, 1.2006, 1.1191, 0.7994, 0.8809, 0.7994, 1.0377, 0.8809], q:[0.5219, 0.7602], qb:[0.359, 0.4404], phi:[0.4796]] [X:[], M:[[-34], [12], [10], [-14], [-10], [14], [-10], [-38], [14]], q:[[31], [3]], qb:[[-17], [7]], phi:[[-6]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_1$, $ M_5$, $ M_7$, $ M_6$, $ M_9$, $ M_8$, $ M_2$, $ \phi_1\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1\tilde{q}_2^2$, $ M_1^2$, $ \phi_1q_1\tilde{q}_2$, $ M_1M_5$, $ M_1M_7$, $ \phi_1q_1^2$, $ M_5^2$, $ M_1M_6$, $ M_5M_7$, $ M_7^2$, $ M_1M_9$, $ \phi_1q_2\tilde{q}_1$, $ M_5M_6$, $ M_6M_7$, $ M_5M_9$, $ M_7M_9$, $ \phi_1q_2\tilde{q}_2$, $ M_1M_8$, $ M_1M_2$, $ M_6^2$, $ M_6M_9$, $ M_9^2$, $ \phi_1q_1q_2$, $ M_5M_8$, $ M_7M_8$, $ M_2M_5$, $ M_2M_7$, $ M_1\phi_1\tilde{q}_1^2$, $ M_2M_6$, $ M_2M_9$, $ M_5\phi_1\tilde{q}_1^2$, $ M_7\phi_1\tilde{q}_1^2$, $ M_1\phi_1\tilde{q}_1\tilde{q}_2$ . -3 t^2.15 + 2*t^2.4 + 2*t^2.64 + t^3.11 + t^3.12 + t^3.59 + t^3.84 + 2*t^4.08 + t^4.31 + t^4.33 + 2*t^4.55 + t^4.57 + 5*t^4.8 + 4*t^5.04 + t^5.27 + t^5.28 + 3*t^5.29 + t^5.51 + 2*t^5.52 + t^5.75 + 2*t^5.76 + 3*t^5.99 - 3*t^6. + t^6.23 + 4*t^6.24 + t^6.46 + 5*t^6.48 - t^6.49 + 2*t^6.71 + 5*t^6.72 + 5*t^6.95 - t^6.96 + 3*t^6.97 + 8*t^7.19 - t^7.2 + 2*t^7.21 + t^7.42 + 2*t^7.43 + 6*t^7.44 + t^7.66 + 4*t^7.67 + 3*t^7.68 + t^7.9 + t^7.91 + 6*t^7.92 + t^7.93 + 3*t^8.14 - 5*t^8.15 + 6*t^8.16 - t^8.17 + t^8.38 + 9*t^8.39 - 9*t^8.4 + 4*t^8.41 + t^8.61 + t^8.62 + 11*t^8.63 - 11*t^8.64 + 2*t^8.65 + 3*t^8.86 + 12*t^8.88 - 6*t^8.89 + t^8.9 - t^4.44/y - t^6.59/y - t^6.84/y - t^7.08/y + t^7.33/y + t^7.55/y + (4*t^7.8)/y + (5*t^8.04)/y + t^8.27/y + t^8.28/y + (2*t^8.29)/y + (2*t^8.51)/y + (2*t^8.52)/y + (4*t^8.76)/y + (2*t^8.99)/y - t^4.44*y - t^6.59*y - t^6.84*y - t^7.08*y + t^7.33*y + t^7.55*y + 4*t^7.8*y + 5*t^8.04*y + t^8.27*y + t^8.28*y + 2*t^8.29*y + 2*t^8.51*y + 2*t^8.52*y + 4*t^8.76*y + 2*t^8.99*y t^2.15/g1^34 + (2*t^2.4)/g1^10 + 2*g1^14*t^2.64 + t^3.11/g1^38 + g1^12*t^3.12 + t^3.59/g1^40 + t^3.84/g1^16 + 2*g1^8*t^4.08 + t^4.31/g1^68 + g1^32*t^4.33 + (2*t^4.55)/g1^44 + g1^56*t^4.57 + (5*t^4.8)/g1^20 + 4*g1^4*t^5.04 + t^5.27/g1^72 + t^5.28/g1^22 + 3*g1^28*t^5.29 + t^5.51/g1^48 + 2*g1^2*t^5.52 + t^5.75/g1^74 + 2*g1^26*t^5.76 + (3*t^5.99)/g1^50 - 3*t^6. + t^6.23/g1^76 + (6*t^6.24)/g1^26 - 2*g1^24*t^6.24 + t^6.46/g1^102 + (5*t^6.48)/g1^2 - g1^48*t^6.49 + (3*t^6.71)/g1^78 - t^6.71/g1^28 + 5*g1^22*t^6.72 + (5*t^6.95)/g1^54 - t^6.96/g1^4 + 3*g1^46*t^6.97 + t^7.19/g1^80 + (7*t^7.19)/g1^30 - g1^20*t^7.2 + 2*g1^70*t^7.21 + t^7.42/g1^106 + (2*t^7.43)/g1^56 + (6*t^7.44)/g1^6 + t^7.66/g1^82 + (4*t^7.67)/g1^32 + 3*g1^18*t^7.68 + t^7.9/g1^108 + t^7.91/g1^58 + (6*t^7.92)/g1^8 + g1^42*t^7.93 + (3*t^8.14)/g1^84 - (5*t^8.15)/g1^34 + 6*g1^16*t^8.16 - g1^66*t^8.17 + t^8.38/g1^110 + (9*t^8.39)/g1^60 - (9*t^8.4)/g1^10 + 4*g1^40*t^8.41 + t^8.61/g1^136 + t^8.62/g1^86 + (11*t^8.63)/g1^36 - 11*g1^14*t^8.64 + 2*g1^64*t^8.65 + (3*t^8.86)/g1^112 + (12*t^8.88)/g1^12 - 6*g1^38*t^8.89 + g1^88*t^8.9 - t^4.44/(g1^6*y) - t^6.59/(g1^40*y) - t^6.84/(g1^16*y) - (g1^8*t^7.08)/y + (g1^32*t^7.33)/y + t^7.55/(g1^44*y) + (4*t^7.8)/(g1^20*y) + (5*g1^4*t^8.04)/y + t^8.27/(g1^72*y) + t^8.28/(g1^22*y) + (2*g1^28*t^8.29)/y + (2*t^8.51)/(g1^48*y) + (2*g1^2*t^8.52)/y + (2*t^8.76)/(g1^24*y) + (2*g1^26*t^8.76)/y + (2*t^8.99)/(g1^50*y) - (t^4.44*y)/g1^6 - (t^6.59*y)/g1^40 - (t^6.84*y)/g1^16 - g1^8*t^7.08*y + g1^32*t^7.33*y + (t^7.55*y)/g1^44 + (4*t^7.8*y)/g1^20 + 5*g1^4*t^8.04*y + (t^8.27*y)/g1^72 + (t^8.28*y)/g1^22 + 2*g1^28*t^8.29*y + (2*t^8.51*y)/g1^48 + 2*g1^2*t^8.52*y + (2*t^8.76*y)/g1^24 + 2*g1^26*t^8.76*y + (2*t^8.99*y)/g1^50


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
4368 SU2adj1nf2 $M_1q_1q_2$ + $ M_2\phi_1^2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_1\tilde{q}_1$ + $ M_5q_2\tilde{q}_2$ + $ M_6q_2\tilde{q}_1$ + $ M_4M_6$ + $ M_3M_5$ + $ M_3M_7$ + $ \phi_1q_2^2$ + $ M_8q_1\tilde{q}_2$ 0.6633 0.8395 0.7902 [X:[], M:[0.7043, 1.0455, 1.2046, 1.1136, 0.7954, 0.8864, 0.7954, 1.0225], q:[0.5343, 0.7614], qb:[0.3522, 0.4432], phi:[0.4772]] t^2.11 + 2*t^2.39 + t^2.66 + t^3.07 + t^3.14 + t^3.34 + t^3.54 + t^3.82 + 2*t^4.09 + t^4.23 + t^4.36 + 2*t^4.5 + t^4.64 + 4*t^4.77 + 2*t^5.05 + t^5.18 + t^5.25 + t^5.32 + 2*t^5.45 + 2*t^5.52 + t^5.66 + t^5.73 + t^5.8 + 3*t^5.93 - 2*t^6. - t^4.43/y - t^4.43*y detail