Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58205 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$ | 1.1721 | 1.3858 | 0.8458 | [X:[1.6], M:[1.2, 0.7804], q:[0.1935, 0.6131], qb:[0.2065, 0.5869], phi:[0.4]] | [X:[[0, 0]], M:[[0, 0], [-1, 1]], q:[[-1, 0], [0, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{4}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}^{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{3}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ | ${2}\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$ | 1 | 2*t^2.34 + t^2.4 + t^2.46 + t^3.54 + 4*t^3.6 + 2*t^4.2 + 3*t^4.68 + 2*t^4.74 + 5*t^4.8 + t^4.86 + t^4.92 + 2*t^5.34 + 2*t^5.4 + 2*t^5.46 + 2*t^5.88 + 8*t^5.94 + t^6. + 3*t^6.06 + 4*t^6.54 + 2*t^6.6 + 2*t^6.66 + 4*t^7.02 + 4*t^7.08 + 10*t^7.14 + 10*t^7.2 + 2*t^7.26 + t^7.32 + t^7.38 + 4*t^7.68 + 4*t^7.74 + 8*t^7.8 + 2*t^7.92 + 3*t^8.22 + 12*t^8.28 + 2*t^8.34 + 12*t^8.4 - 2*t^8.46 + 3*t^8.52 + 8*t^8.88 + 8*t^8.94 - t^4.2/y - t^5.4/y - (2*t^6.54)/y - t^6.66/y + t^7.68/y - t^7.8/y + t^7.86/y - t^8.88/y + (9*t^8.94)/y - t^4.2*y - t^5.4*y - 2*t^6.54*y - t^6.66*y + t^7.68*y - t^7.8*y + t^7.86*y - t^8.88*y + 9*t^8.94*y | (2*g2*t^2.34)/g1 + t^2.4 + (g1*t^2.46)/g2 + (g2*t^3.54)/g1 + 4*t^3.6 + t^4.2/(g1^2*g2) + g1^2*g2*t^4.2 + (3*g2^2*t^4.68)/g1^2 + (2*g2*t^4.74)/g1 + 5*t^4.8 + (g1*t^4.86)/g2 + (g1^2*t^4.92)/g2^2 + t^5.34/g1^3 + g1*g2^2*t^5.34 + t^5.4/(g1^2*g2) + g1^2*g2*t^5.4 + g1^3*t^5.46 + t^5.46/(g1*g2^2) + (2*g2^2*t^5.88)/g1^2 + (8*g2*t^5.94)/g1 + t^6. + (3*g1*t^6.06)/g2 + (2*t^6.54)/g1^3 + 2*g1*g2^2*t^6.54 + t^6.6/(g1^2*g2) + g1^2*g2*t^6.6 + g1^3*t^6.66 + t^6.66/(g1*g2^2) + (4*g2^3*t^7.02)/g1^3 + (4*g2^2*t^7.08)/g1^2 + (10*g2*t^7.14)/g1 + 10*t^7.2 + (2*g1*t^7.26)/g2 + (g1^2*t^7.32)/g2^2 + (g1^3*t^7.38)/g2^3 + (2*g2*t^7.68)/g1^4 + 2*g2^3*t^7.68 + (2*t^7.74)/g1^3 + 2*g1*g2^2*t^7.74 + (4*t^7.8)/(g1^2*g2) + 4*g1^2*g2*t^7.8 + t^7.92/g2^3 + (g1^4*t^7.92)/g2 + (3*g2^3*t^8.22)/g1^3 + (12*g2^2*t^8.28)/g1^2 + (2*g2*t^8.34)/g1 + 10*t^8.4 + t^8.4/(g1^4*g2^2) + g1^4*g2^2*t^8.4 - (2*g1*t^8.46)/g2 + (3*g1^2*t^8.52)/g2^2 + (4*g2*t^8.88)/g1^4 + 4*g2^3*t^8.88 + (4*t^8.94)/g1^3 + 4*g1*g2^2*t^8.94 - t^4.2/y - t^5.4/y - (2*g2*t^6.54)/(g1*y) - (g1*t^6.66)/(g2*y) + (g2^2*t^7.68)/(g1^2*y) - t^7.8/y + (g1*t^7.86)/(g2*y) - (g2^2*t^8.88)/(g1^2*y) + (9*g2*t^8.94)/(g1*y) - t^4.2*y - t^5.4*y - (2*g2*t^6.54*y)/g1 - (g1*t^6.66*y)/g2 + (g2^2*t^7.68*y)/g1^2 - t^7.8*y + (g1*t^7.86*y)/g2 - (g2^2*t^8.88*y)/g1^2 + (9*g2*t^8.94*y)/g1 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57341 | SU3adj1nf2 | ${}\phi_{1}^{5}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }q_{1}\tilde{q}_{1}X_{1}$ | 1.155 | 1.355 | 0.8524 | [X:[1.6], M:[1.2], q:[0.2, 0.6], qb:[0.2, 0.6], phi:[0.4]] | 3*t^2.4 + 6*t^3.6 + 2*t^4.2 + 8*t^4.8 + 6*t^5.4 + 12*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y | detail | {a: 231/200, c: 271/200, X1: 8/5, M1: 6/5, q1: 1/5, q2: 3/5, qb1: 1/5, qb2: 3/5, phi1: 2/5} |