Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5818 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{3}M_{5}$ + ${ }M_{3}M_{7}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}X_{1}$ + ${ }M_{8}\phi_{1}q_{2}^{2}$ + ${ }M_{6}M_{9}$ 0.5902 0.7476 0.7895 [X:[1.3608], M:[0.6392, 1.1565, 1.0478, 0.7348, 0.9522, 1.2652, 0.9522, 0.7479, 0.7348], q:[0.9456, 0.4152], qb:[0.3196, 0.6326], phi:[0.4217]] [X:[[22]], M:[[-22], [4], [14], [6], [-14], [-6], [-14], [-32], [6]], q:[[5], [17]], qb:[[-11], [-3]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{9}$, ${ }M_{8}$, ${ }M_{5}$, ${ }M_{7}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{9}$, ${ }M_{9}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{8}$, ${ }M_{8}M_{9}$, ${ }M_{8}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{4}M_{7}$, ${ }M_{5}M_{9}$, ${ }M_{7}M_{9}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{5}M_{8}$, ${ }M_{7}M_{8}$, ${ }M_{4}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{9}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{8}\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{2}M_{9}$, ${ }M_{4}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{9}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{2}M_{8}$, ${ }M_{8}\phi_{1}q_{2}\tilde{q}_{1}$ ${}$ -3 2*t^2.204 + t^2.244 + 2*t^2.857 + t^3.183 + 2*t^3.47 + t^4.082 + 3*t^4.409 + 2*t^4.448 + t^4.487 + t^4.735 + 4*t^5.061 + 2*t^5.1 + t^5.387 + t^5.426 + 3*t^5.674 + 4*t^5.713 - 3*t^6. + 2*t^6.039 + t^6.287 + 3*t^6.326 + t^6.366 + 2*t^6.613 + 3*t^6.652 + 2*t^6.692 + t^6.731 + 3*t^6.939 - t^7.226 + 4*t^7.265 + 4*t^7.305 + 2*t^7.344 + t^7.591 + t^7.631 + t^7.67 + 2*t^7.878 + 7*t^7.918 + 4*t^7.957 + t^8.165 - 6*t^8.204 - t^8.244 + 2*t^8.283 + 3*t^8.53 + 6*t^8.57 + t^8.609 + t^8.817 - 5*t^8.857 + 5*t^8.896 + 2*t^8.935 + t^8.975 - t^4.265/y - t^6.47/y - t^6.509/y - t^7.122/y + (2*t^7.409)/y + (2*t^7.448)/y + t^8.022/y + (5*t^8.061)/y + (2*t^8.1)/y + (2*t^8.387)/y + t^8.426/y + (3*t^8.674)/y + (2*t^8.713)/y - t^8.753/y - t^4.265*y - t^6.47*y - t^6.509*y - t^7.122*y + 2*t^7.409*y + 2*t^7.448*y + t^8.022*y + 5*t^8.061*y + 2*t^8.1*y + 2*t^8.387*y + t^8.426*y + 3*t^8.674*y + 2*t^8.713*y - t^8.753*y 2*g1^6*t^2.204 + t^2.244/g1^32 + (2*t^2.857)/g1^14 + t^3.183/g1^24 + 2*g1^4*t^3.47 + g1^22*t^4.082 + 3*g1^12*t^4.409 + (2*t^4.448)/g1^26 + t^4.487/g1^64 + g1^2*t^4.735 + (4*t^5.061)/g1^8 + (2*t^5.1)/g1^46 + t^5.387/g1^18 + t^5.426/g1^56 + 3*g1^10*t^5.674 + (4*t^5.713)/g1^28 - 3*t^6. + (2*t^6.039)/g1^38 + g1^28*t^6.287 + (3*t^6.326)/g1^10 + t^6.366/g1^48 + 2*g1^18*t^6.613 + (3*t^6.652)/g1^20 + (2*t^6.692)/g1^58 + t^6.731/g1^96 + 3*g1^8*t^6.939 - g1^36*t^7.226 + (4*t^7.265)/g1^2 + (4*t^7.305)/g1^40 + (2*t^7.344)/g1^78 + t^7.591/g1^12 + t^7.631/g1^50 + t^7.67/g1^88 + 2*g1^16*t^7.878 + (7*t^7.918)/g1^22 + (4*t^7.957)/g1^60 + g1^44*t^8.165 - 6*g1^6*t^8.204 - t^8.244/g1^32 + (2*t^8.283)/g1^70 + (3*t^8.53)/g1^4 + (6*t^8.57)/g1^42 + t^8.609/g1^80 + g1^24*t^8.817 - (5*t^8.857)/g1^14 + (5*t^8.896)/g1^52 + (2*t^8.935)/g1^90 + t^8.975/g1^128 - t^4.265/(g1^2*y) - (g1^4*t^6.47)/y - t^6.509/(g1^34*y) - t^7.122/(g1^16*y) + (2*g1^12*t^7.409)/y + (2*t^7.448)/(g1^26*y) + (g1^30*t^8.022)/y + (5*t^8.061)/(g1^8*y) + (2*t^8.1)/(g1^46*y) + (2*t^8.387)/(g1^18*y) + t^8.426/(g1^56*y) + (3*g1^10*t^8.674)/y + (2*t^8.713)/(g1^28*y) - t^8.753/(g1^66*y) - (t^4.265*y)/g1^2 - g1^4*t^6.47*y - (t^6.509*y)/g1^34 - (t^7.122*y)/g1^16 + 2*g1^12*t^7.409*y + (2*t^7.448*y)/g1^26 + g1^30*t^8.022*y + (5*t^8.061*y)/g1^8 + (2*t^8.1*y)/g1^46 + (2*t^8.387*y)/g1^18 + (t^8.426*y)/g1^56 + 3*g1^10*t^8.674*y + (2*t^8.713*y)/g1^28 - (t^8.753*y)/g1^66


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
4362 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{3}M_{5}$ + ${ }M_{3}M_{7}$ + ${ }\phi_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{1}X_{1}$ + ${ }M_{8}\phi_{1}q_{2}^{2}$ 0.5706 0.7117 0.8018 [X:[1.3642], M:[0.6358, 1.1571, 1.05, 0.7357, 0.95, 1.2643, 0.95, 0.7429], q:[0.9464, 0.4178], qb:[0.3179, 0.6321], phi:[0.4214]] t^2.207 + t^2.229 + 2*t^2.85 + t^3.172 + 2*t^3.471 + t^3.793 + t^4.093 + t^4.414 + t^4.436 + t^4.458 + t^4.736 + 2*t^5.057 + 2*t^5.079 + t^5.4 + t^5.679 + 4*t^5.7 - 2*t^6. - t^4.264/y - t^4.264*y detail