Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58161 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ + ${ }M_{1}X_{1}$ 1.459 1.6687 0.8743 [X:[1.3289], M:[0.6711], q:[0.4363, 0.4497], qb:[0.5637, 0.5369], phi:[0.3356]] [X:[[6]], M:[[-6]], q:[[11], [-7]], qb:[[-11], [25]], phi:[[-3]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${}$ -1 t^2.01 + t^2.92 + t^2.96 + t^3. + t^3.02 + t^3.04 + t^3.93 + t^3.97 + t^4.01 + t^4.03 + t^4.05 + 2*t^4.93 + 3*t^4.97 + 3*t^5.01 + t^5.03 + 2*t^5.05 + t^5.84 + t^5.88 + 2*t^5.92 + 2*t^5.94 + t^5.96 + 3*t^5.98 - t^6. + 3*t^6.02 + 2*t^6.04 + 2*t^6.06 + t^6.85 + 2*t^6.89 + 3*t^6.93 + 4*t^6.95 + 2*t^6.97 + 5*t^6.99 + t^7.01 + 5*t^7.03 + t^7.05 + 4*t^7.07 + 4*t^7.85 + 5*t^7.89 - t^7.91 + 8*t^7.93 + t^7.95 + 5*t^7.97 + 3*t^7.99 + 3*t^8.01 + 4*t^8.03 + 3*t^8.05 + 3*t^8.07 + t^8.09 + t^8.76 + t^8.8 + 2*t^8.84 + 3*t^8.86 + t^8.88 + 7*t^8.9 - 3*t^8.92 + 10*t^8.94 + 8*t^8.98 - t^4.01/y - t^5.01/y - t^6.02/y - t^6.93/y - t^6.97/y - t^7.01/y - (2*t^7.03)/y - t^7.05/y + t^7.99/y - t^8.03/y + t^8.88/y + t^8.92/y + (2*t^8.96)/y - t^4.01*y - t^5.01*y - t^6.02*y - t^6.93*y - t^6.97*y - t^7.01*y - 2*t^7.03*y - t^7.05*y + t^7.99*y - t^8.03*y + t^8.88*y + t^8.92*y + 2*t^8.96*y t^2.01/g1^6 + g1^36*t^2.92 + g1^18*t^2.96 + t^3. + t^3.02/g1^9 + t^3.04/g1^18 + g1^33*t^3.93 + g1^15*t^3.97 + t^4.01/g1^3 + t^4.03/g1^12 + t^4.05/g1^21 + 2*g1^30*t^4.93 + 3*g1^12*t^4.97 + (3*t^5.01)/g1^6 + t^5.03/g1^15 + (2*t^5.05)/g1^24 + g1^72*t^5.84 + g1^54*t^5.88 + 2*g1^36*t^5.92 + 2*g1^27*t^5.94 + g1^18*t^5.96 + 3*g1^9*t^5.98 - t^6. + (3*t^6.02)/g1^9 + (2*t^6.04)/g1^18 + (2*t^6.06)/g1^27 + g1^69*t^6.85 + 2*g1^51*t^6.89 + 3*g1^33*t^6.93 + 4*g1^24*t^6.95 + 2*g1^15*t^6.97 + 5*g1^6*t^6.99 + t^7.01/g1^3 + (5*t^7.03)/g1^12 + t^7.05/g1^21 + (4*t^7.07)/g1^30 + 4*g1^66*t^7.85 + 5*g1^48*t^7.89 - g1^39*t^7.91 + 8*g1^30*t^7.93 + g1^21*t^7.95 + 5*g1^12*t^7.97 + 3*g1^3*t^7.99 + (3*t^8.01)/g1^6 + (4*t^8.03)/g1^15 + (3*t^8.05)/g1^24 + (3*t^8.07)/g1^33 + t^8.09/g1^42 + g1^108*t^8.76 + g1^90*t^8.8 + 2*g1^72*t^8.84 + 3*g1^63*t^8.86 + g1^54*t^8.88 + 7*g1^45*t^8.9 - 3*g1^36*t^8.92 + 10*g1^27*t^8.94 + 8*g1^9*t^8.98 - t^4.01/(g1^3*y) - t^5.01/(g1^6*y) - t^6.02/(g1^9*y) - (g1^33*t^6.93)/y - (g1^15*t^6.97)/y - t^7.01/(g1^3*y) - (2*t^7.03)/(g1^12*y) - t^7.05/(g1^21*y) + (g1^3*t^7.99)/y - t^8.03/(g1^15*y) + (g1^54*t^8.88)/y + (g1^36*t^8.92)/y + (2*g1^18*t^8.96)/y - (t^4.01*y)/g1^3 - (t^5.01*y)/g1^6 - (t^6.02*y)/g1^9 - g1^33*t^6.93*y - g1^15*t^6.97*y - (t^7.01*y)/g1^3 - (2*t^7.03*y)/g1^12 - (t^7.05*y)/g1^21 + g1^3*t^7.99*y - (t^8.03*y)/g1^15 + g1^54*t^8.88*y + g1^36*t^8.92*y + 2*g1^18*t^8.96*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57329 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 1.4381 1.6273 0.8837 [X:[1.3288], q:[0.4362, 0.4497], qb:[0.5638, 0.5368], phi:[0.3356]] t^2.919 + t^2.959 + t^3. + t^3.02 + t^3.041 + t^3.926 + t^3.966 + t^3.986 + t^4.007 + t^4.047 + t^4.932 + 2*t^4.973 + 2*t^5.014 + t^5.054 + t^5.838 + t^5.878 + 2*t^5.919 + t^5.939 + t^5.959 + 2*t^5.98 - t^6. - t^4.007/y - t^5.014/y - t^4.007*y - t^5.014*y detail