Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58126 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ 1.4603 1.6658 0.8766 [X:[1.3404], M:[0.6702], q:[0.5637, 0.5427], qb:[0.4363, 0.4784], phi:[0.3298]] [X:[[6]], M:[[3]], q:[[7], [-11]], qb:[[-7], [29]], phi:[[-3]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}^{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$ ${}$ -1 t^2.01 + t^2.94 + t^2.97 + t^3. + t^3.06 + t^3.13 + t^3.93 + 2*t^4.02 + t^4.05 + t^4.12 + t^4.92 + t^4.95 + 2*t^4.98 + t^5.01 + 2*t^5.04 + t^5.07 + t^5.11 + t^5.14 + t^5.17 + t^5.91 + 3*t^5.94 + t^5.97 - t^6. + 4*t^6.03 + 2*t^6.06 + t^6.09 + 2*t^6.13 + t^6.16 + t^6.19 + t^6.25 + 2*t^6.89 + 2*t^6.93 + 2*t^6.96 + 3*t^6.99 + 4*t^7.02 + 3*t^7.05 + 3*t^7.08 + t^7.12 + 3*t^7.15 + 3*t^7.18 + t^7.24 + t^7.27 + 2*t^7.85 + 2*t^7.92 + 4*t^7.95 + 4*t^7.98 - t^8.01 + 8*t^8.04 + 3*t^8.07 + 4*t^8.11 + 3*t^8.14 + 5*t^8.17 + t^8.2 + 2*t^8.23 + t^8.26 + t^8.29 - t^8.81 + t^8.84 + 4*t^8.91 + 5*t^8.97 + t^8.97/y^2 - t^3.99/y - t^4.98/y - t^6./y - t^6.93/y - t^6.96/y - (2*t^6.99)/y - t^7.05/y - t^7.12/y - t^7.92/y + t^7.98/y - t^8.04/y + t^8.07/y - t^8.11/y + t^8.14/y + t^8.94/y - t^3.99*y - t^4.98*y - t^6.*y - t^6.93*y - t^6.96*y - 2*t^6.99*y - t^7.05*y - t^7.12*y - t^7.92*y + t^7.98*y - t^8.04*y + t^8.07*y - t^8.11*y + t^8.14*y + t^8.94*y + t^8.97*y^2 g1^3*t^2.01 + t^2.94/g1^18 + t^2.97/g1^9 + t^3. + g1^18*t^3.06 + g1^36*t^3.13 + t^3.93/g1^21 + 2*g1^6*t^4.02 + g1^15*t^4.05 + g1^33*t^4.12 + t^4.92/g1^24 + t^4.95/g1^15 + (2*t^4.98)/g1^6 + g1^3*t^5.01 + 2*g1^12*t^5.04 + g1^21*t^5.07 + g1^30*t^5.11 + g1^39*t^5.14 + g1^48*t^5.17 + t^5.91/g1^27 + (3*t^5.94)/g1^18 + t^5.97/g1^9 - t^6. + 4*g1^9*t^6.03 + 2*g1^18*t^6.06 + g1^27*t^6.09 + 2*g1^36*t^6.13 + g1^45*t^6.16 + g1^54*t^6.19 + g1^72*t^6.25 + (2*t^6.89)/g1^30 + (2*t^6.93)/g1^21 + (2*t^6.96)/g1^12 + (3*t^6.99)/g1^3 + 4*g1^6*t^7.02 + 3*g1^15*t^7.05 + 3*g1^24*t^7.08 + g1^33*t^7.12 + 3*g1^42*t^7.15 + 3*g1^51*t^7.18 + g1^69*t^7.24 + g1^78*t^7.27 + (2*t^7.85)/g1^42 + (2*t^7.92)/g1^24 + (4*t^7.95)/g1^15 + (4*t^7.98)/g1^6 - g1^3*t^8.01 + 8*g1^12*t^8.04 + 3*g1^21*t^8.07 + 4*g1^30*t^8.11 + 3*g1^39*t^8.14 + 5*g1^48*t^8.17 + g1^57*t^8.2 + 2*g1^66*t^8.23 + g1^75*t^8.26 + g1^84*t^8.29 - t^8.81/g1^54 + t^8.84/g1^45 + (4*t^8.91)/g1^27 + (5*t^8.97)/g1^9 + t^8.97/(g1^9*y^2) - t^3.99/(g1^3*y) - t^4.98/(g1^6*y) - t^6./y - t^6.93/(g1^21*y) - t^6.96/(g1^12*y) - (2*t^6.99)/(g1^3*y) - (g1^15*t^7.05)/y - (g1^33*t^7.12)/y - t^7.92/(g1^24*y) + t^7.98/(g1^6*y) - (g1^12*t^8.04)/y + (g1^21*t^8.07)/y - (g1^30*t^8.11)/y + (g1^39*t^8.14)/y + t^8.94/(g1^18*y) - (t^3.99*y)/g1^3 - (t^4.98*y)/g1^6 - t^6.*y - (t^6.93*y)/g1^21 - (t^6.96*y)/g1^12 - (2*t^6.99*y)/g1^3 - g1^15*t^7.05*y - g1^33*t^7.12*y - (t^7.92*y)/g1^24 + (t^7.98*y)/g1^6 - g1^12*t^8.04*y + g1^21*t^8.07*y - g1^30*t^8.11*y + g1^39*t^8.14*y + (t^8.94*y)/g1^18 + (t^8.97*y^2)/g1^9


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57328 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ 1.4395 1.6243 0.8862 [X:[1.3404], q:[0.5638, 0.5427], qb:[0.4362, 0.4785], phi:[0.3298]] t^2.937 + t^2.968 + t^3. + t^3.063 + t^3.127 + t^3.926 + t^3.989 + t^4.021 + t^4.053 + t^4.116 + t^4.916 + t^4.979 + 2*t^5.042 + t^5.106 + t^5.169 + t^5.905 + 2*t^5.937 + t^5.968 - t^6. - t^3.989/y - t^4.979/y - t^3.989*y - t^4.979*y detail