Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58124 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ | 1.4601 | 1.6646 | 0.8772 | [X:[1.3398], M:[0.6894], q:[0.5631, 0.5437], qb:[0.4369, 0.4758], phi:[0.3301]] | [X:[[6]], M:[[21]], q:[[7], [-11]], qb:[[-7], [29]], phi:[[-3]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$ | ${}$ | -1 | t^2.07 + t^2.94 + t^2.97 + t^3. + t^3.06 + t^3.12 + t^3.99 + t^4.02 + t^4.05 + t^4.11 + t^4.14 + t^4.92 + t^4.98 + t^5.01 + 3*t^5.04 + t^5.07 + t^5.1 + t^5.13 + t^5.16 + t^5.18 + t^5.91 + 2*t^5.94 + t^5.97 - t^6. + 2*t^6.03 + 2*t^6.06 + 2*t^6.09 + 2*t^6.12 + t^6.15 + 2*t^6.18 + t^6.2 + t^6.23 - t^6.87 + t^6.9 + t^6.93 + 2*t^6.96 + 2*t^6.99 + 3*t^7.02 + 2*t^7.05 + 3*t^7.08 + 4*t^7.11 + 3*t^7.14 + 3*t^7.17 + t^7.19 + 2*t^7.22 + 2*t^7.25 + t^7.86 + t^7.92 + 4*t^7.98 + 3*t^8.01 + 5*t^8.04 + 6*t^8.1 + 3*t^8.13 + 6*t^8.16 + 2*t^8.18 + 3*t^8.21 + 2*t^8.24 + 2*t^8.27 + t^8.3 - t^8.82 + 2*t^8.91 - 3*t^8.94 + 3*t^8.97 + t^8.97/y^2 - t^3.99/y - t^4.98/y - t^6.06/y - t^6.93/y - t^6.96/y - t^6.99/y - (2*t^7.05)/y - t^7.11/y - t^7.95/y - t^7.98/y + t^8.01/y + t^8.07/y - t^8.1/y + t^8.18/y + t^8.91/y + t^8.94/y - t^3.99*y - t^4.98*y - t^6.06*y - t^6.93*y - t^6.96*y - t^6.99*y - 2*t^7.05*y - t^7.11*y - t^7.95*y - t^7.98*y + t^8.01*y + t^8.07*y - t^8.1*y + t^8.18*y + t^8.91*y + t^8.94*y + t^8.97*y^2 | g1^21*t^2.07 + t^2.94/g1^18 + t^2.97/g1^9 + t^3. + g1^18*t^3.06 + g1^36*t^3.12 + t^3.99/g1^3 + g1^6*t^4.02 + g1^15*t^4.05 + g1^33*t^4.11 + g1^42*t^4.14 + t^4.92/g1^24 + t^4.98/g1^6 + g1^3*t^5.01 + 3*g1^12*t^5.04 + g1^21*t^5.07 + g1^30*t^5.1 + g1^39*t^5.13 + g1^48*t^5.16 + g1^57*t^5.18 + t^5.91/g1^27 + (2*t^5.94)/g1^18 + t^5.97/g1^9 - t^6. + 2*g1^9*t^6.03 + 2*g1^18*t^6.06 + 2*g1^27*t^6.09 + 2*g1^36*t^6.12 + g1^45*t^6.15 + 2*g1^54*t^6.18 + g1^63*t^6.2 + g1^72*t^6.23 - t^6.87/g1^39 + t^6.9/g1^30 + t^6.93/g1^21 + (2*t^6.96)/g1^12 + (2*t^6.99)/g1^3 + 3*g1^6*t^7.02 + 2*g1^15*t^7.05 + 3*g1^24*t^7.08 + 4*g1^33*t^7.11 + 3*g1^42*t^7.14 + 3*g1^51*t^7.17 + g1^60*t^7.19 + 2*g1^69*t^7.22 + 2*g1^78*t^7.25 + t^7.86/g1^42 + t^7.92/g1^24 + (4*t^7.98)/g1^6 + 3*g1^3*t^8.01 + 5*g1^12*t^8.04 + 6*g1^30*t^8.1 + 3*g1^39*t^8.13 + 6*g1^48*t^8.16 + 2*g1^57*t^8.18 + 3*g1^66*t^8.21 + 2*g1^75*t^8.24 + 2*g1^84*t^8.27 + g1^93*t^8.3 - t^8.82/g1^54 + (2*t^8.91)/g1^27 - (3*t^8.94)/g1^18 + (3*t^8.97)/g1^9 + t^8.97/(g1^9*y^2) - t^3.99/(g1^3*y) - t^4.98/(g1^6*y) - (g1^18*t^6.06)/y - t^6.93/(g1^21*y) - t^6.96/(g1^12*y) - t^6.99/(g1^3*y) - (2*g1^15*t^7.05)/y - (g1^33*t^7.11)/y - t^7.95/(g1^15*y) - t^7.98/(g1^6*y) + (g1^3*t^8.01)/y + (g1^21*t^8.07)/y - (g1^30*t^8.1)/y + (g1^57*t^8.18)/y + t^8.91/(g1^27*y) + t^8.94/(g1^18*y) - (t^3.99*y)/g1^3 - (t^4.98*y)/g1^6 - g1^18*t^6.06*y - (t^6.93*y)/g1^21 - (t^6.96*y)/g1^12 - (t^6.99*y)/g1^3 - 2*g1^15*t^7.05*y - g1^33*t^7.11*y - (t^7.95*y)/g1^15 - (t^7.98*y)/g1^6 + g1^3*t^8.01*y + g1^21*t^8.07*y - g1^30*t^8.1*y + g1^57*t^8.18*y + (t^8.91*y)/g1^27 + (t^8.94*y)/g1^18 + (t^8.97*y^2)/g1^9 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57328 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ | 1.4395 | 1.6243 | 0.8862 | [X:[1.3404], q:[0.5638, 0.5427], qb:[0.4362, 0.4785], phi:[0.3298]] | t^2.937 + t^2.968 + t^3. + t^3.063 + t^3.127 + t^3.926 + t^3.989 + t^4.021 + t^4.053 + t^4.116 + t^4.916 + t^4.979 + 2*t^5.042 + t^5.106 + t^5.169 + t^5.905 + 2*t^5.937 + t^5.968 - t^6. - t^3.989/y - t^4.979/y - t^3.989*y - t^4.979*y | detail |