Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5812 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{6}^{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{3}M_{8}$ + ${ }M_{2}M_{7}$ + ${ }M_{7}M_{9}$ 0.6901 0.8525 0.8095 [M:[0.6867, 1.1429, 1.0276, 0.9724, 0.7419, 1.0, 0.8571, 0.9724, 1.1429], q:[0.6704, 0.6429], qb:[0.3571, 0.6153], phi:[0.4286]] [M:[[1], [0], [-1], [1], [-1], [0], [0], [1], [0]], q:[[-1], [0]], qb:[[0], [1]], phi:[[0]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{5}$, ${ }M_{4}$, ${ }M_{8}$, ${ }M_{6}$, ${ }M_{2}$, ${ }M_{9}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{5}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{5}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}M_{8}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}M_{6}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}M_{8}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{5}M_{6}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}M_{9}$, ${ }M_{2}M_{5}$, ${ }M_{5}M_{9}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{8}$, ${ }M_{8}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{6}M_{8}$ ${}$ -3 t^2.06 + t^2.226 + 2*t^2.917 + t^3. + 2*t^3.429 + t^3.857 + t^4.12 + t^4.203 + 2*t^4.286 + t^4.368 + t^4.451 + 3*t^4.977 + t^5.06 + 3*t^5.143 + t^5.226 + t^5.308 + 2*t^5.489 + 2*t^5.654 + 2*t^5.834 + t^5.917 - 3*t^6. - t^6.083 - t^6.166 + t^6.18 + t^6.263 + 5*t^6.346 + 3*t^6.429 + t^6.511 + t^6.594 + t^6.677 + t^6.774 + t^6.857 - t^6.94 + 3*t^7.037 + 2*t^7.12 + 4*t^7.203 + 2*t^7.286 + 2*t^7.368 + t^7.534 + 2*t^7.549 + t^7.632 + 4*t^7.714 + t^7.797 + 2*t^7.88 + 4*t^7.895 + 2*t^7.977 - t^8.143 - 3*t^8.226 + t^8.24 + t^8.323 - t^8.391 + 6*t^8.406 + 2*t^8.489 + 4*t^8.571 + 2*t^8.654 + 2*t^8.737 + 2*t^8.752 + t^8.82 + t^8.834 + t^8.902 - 6*t^8.917 - t^4.286/y - t^6.346/y - t^6.511/y - t^7.203/y + t^7.286/y + t^7.368/y + (2*t^7.977)/y + (2*t^8.06)/y + (2*t^8.143)/y + (2*t^8.226)/y - t^8.406/y + (2*t^8.489)/y - t^8.571/y + (2*t^8.654)/y - t^8.737/y + t^8.834/y + (3*t^8.917)/y - t^4.286*y - t^6.346*y - t^6.511*y - t^7.203*y + t^7.286*y + t^7.368*y + 2*t^7.977*y + 2*t^8.06*y + 2*t^8.143*y + 2*t^8.226*y - t^8.406*y + 2*t^8.489*y - t^8.571*y + 2*t^8.654*y - t^8.737*y + t^8.834*y + 3*t^8.917*y g1*t^2.06 + t^2.226/g1 + 2*g1*t^2.917 + t^3. + 2*t^3.429 + t^3.857 + g1^2*t^4.12 + g1*t^4.203 + 2*t^4.286 + t^4.368/g1 + t^4.451/g1^2 + 3*g1^2*t^4.977 + g1*t^5.06 + 3*t^5.143 + t^5.226/g1 + t^5.308/g1^2 + 2*g1*t^5.489 + (2*t^5.654)/g1 + 2*g1^2*t^5.834 + g1*t^5.917 - 3*t^6. - t^6.083/g1 - t^6.166/g1^2 + g1^3*t^6.18 + g1^2*t^6.263 + 5*g1*t^6.346 + 3*t^6.429 + t^6.511/g1 + t^6.594/g1^2 + t^6.677/g1^3 + g1*t^6.774 + t^6.857 - t^6.94/g1 + 3*g1^3*t^7.037 + 2*g1^2*t^7.12 + 4*g1*t^7.203 + 2*t^7.286 + (2*t^7.368)/g1 + t^7.534/g1^3 + 2*g1^2*t^7.549 + g1*t^7.632 + 4*t^7.714 + t^7.797/g1 + (2*t^7.88)/g1^2 + 4*g1^3*t^7.895 + 2*g1^2*t^7.977 - t^8.143 - (3*t^8.226)/g1 + g1^4*t^8.24 + g1^3*t^8.323 - t^8.391/g1^3 + 6*g1^2*t^8.406 + 2*g1*t^8.489 + 4*t^8.571 + (2*t^8.654)/g1 + (2*t^8.737)/g1^2 + 2*g1^3*t^8.752 + t^8.82/g1^3 + g1^2*t^8.834 + t^8.902/g1^4 - 6*g1*t^8.917 - t^4.286/y - (g1*t^6.346)/y - t^6.511/(g1*y) - (g1*t^7.203)/y + t^7.286/y + t^7.368/(g1*y) + (2*g1^2*t^7.977)/y + (2*g1*t^8.06)/y + (2*t^8.143)/y + (2*t^8.226)/(g1*y) - (g1^2*t^8.406)/y + (2*g1*t^8.489)/y - t^8.571/y + (2*t^8.654)/(g1*y) - t^8.737/(g1^2*y) + (g1^2*t^8.834)/y + (3*g1*t^8.917)/y - t^4.286*y - g1*t^6.346*y - (t^6.511*y)/g1 - g1*t^7.203*y + t^7.286*y + (t^7.368*y)/g1 + 2*g1^2*t^7.977*y + 2*g1*t^8.06*y + 2*t^8.143*y + (2*t^8.226*y)/g1 - g1^2*t^8.406*y + 2*g1*t^8.489*y - t^8.571*y + (2*t^8.654*y)/g1 - (t^8.737*y)/g1^2 + g1^2*t^8.834*y + 3*g1*t^8.917*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
4355 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{2}\tilde{q}_{2}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{6}^{2}$ + ${ }M_{3}M_{4}$ + ${ }M_{7}\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{3}M_{8}$ + ${ }M_{2}M_{7}$ 0.7026 0.874 0.8039 [M:[0.6867, 1.1429, 1.0276, 0.9724, 0.7419, 1.0, 0.8571, 0.9724], q:[0.6704, 0.6429], qb:[0.3571, 0.6153], phi:[0.4286]] t^2.06 + t^2.226 + t^2.571 + 2*t^2.917 + t^3. + t^3.429 + t^3.857 + t^4.12 + t^4.203 + 2*t^4.286 + t^4.368 + t^4.451 + t^4.632 + t^4.797 + 3*t^4.977 + t^5.06 + 4*t^5.143 + t^5.226 + t^5.308 + 3*t^5.489 + t^5.571 + t^5.654 + 2*t^5.834 + t^5.917 - 2*t^6. - t^4.286/y - t^4.286*y detail