Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58109 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ 1.4747 1.684 0.8757 [X:[1.329], M:[0.987, 0.6904], q:[0.4902, 0.5032], qb:[0.5098, 0.4839], phi:[0.3355]] [X:[[0, 2]], M:[[0, 6], [0, -11]], q:[[-1, 12], [-1, 6]], qb:[[1, -12], [1, 0]], phi:[[0, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${}$ -3 t^2.07 + t^2.92 + 2*t^2.96 + t^3. + t^3.02 + t^3.97 + t^3.99 + t^4.01 + t^4.05 + t^4.14 + t^4.94 + t^4.97 + t^4.99 + t^5.01 + 2*t^5.03 + t^5.05 + t^5.07 + t^5.09 + t^5.44 + t^5.46 + t^5.5 + t^5.52 + t^5.84 + 2*t^5.88 + 3*t^5.92 + t^5.94 + t^5.96 + 2*t^5.98 - 3*t^6. + t^6.02 + t^6.04 + t^6.06 + t^6.12 + t^6.21 + t^6.45 + t^6.46 + t^6.5 + t^6.52 + t^6.89 + t^6.91 + 2*t^6.93 + 2*t^6.95 + 3*t^6.97 + 2*t^6.99 + 2*t^7.01 + t^7.03 + t^7.05 + 2*t^7.06 + 2*t^7.1 + t^7.12 + t^7.14 + t^7.16 + t^7.37 + t^7.43 + t^7.51 + t^7.53 + t^7.55 + t^7.57 + t^7.59 + t^7.61 + t^7.86 + 3*t^7.9 + 4*t^7.94 + 3*t^7.95 + 4*t^7.97 + 4*t^7.99 + 4*t^8.01 + 2*t^8.03 + 3*t^8.05 - 2*t^8.07 + t^8.09 + t^8.11 + t^8.13 + t^8.19 + t^8.29 + t^8.36 + t^8.38 + t^8.4 + 2*t^8.42 + t^8.44 + 2*t^8.46 + t^8.48 - t^8.5 + t^8.52 - t^8.56 + t^8.77 + 2*t^8.81 + 3*t^8.84 + t^8.86 + 3*t^8.88 + 3*t^8.9 - 3*t^8.92 + 5*t^8.94 - 5*t^8.96 + 4*t^8.98 - t^4.01/y - t^5.01/y - t^6.08/y - t^6.93/y - (2*t^6.97)/y - t^7.01/y - t^7.03/y - t^7.08/y - (2*t^7.97)/y + t^7.99/y - t^8.01/y + t^8.03/y + t^8.07/y + t^8.09/y - t^8.15/y + (2*t^8.88)/y + (2*t^8.92)/y + t^8.94/y + (2*t^8.96)/y + t^8.98/y - t^4.01*y - t^5.01*y - t^6.08*y - t^6.93*y - 2*t^6.97*y - t^7.01*y - t^7.03*y - t^7.08*y - 2*t^7.97*y + t^7.99*y - t^8.01*y + t^8.03*y + t^8.07*y + t^8.09*y - t^8.15*y + 2*t^8.88*y + 2*t^8.92*y + t^8.94*y + 2*t^8.96*y + t^8.98*y t^2.07/g2^11 + g2^12*t^2.92 + 2*g2^6*t^2.96 + t^3. + t^3.02/g2^3 + g2^5*t^3.97 + g2^2*t^3.99 + t^4.01/g2 + t^4.05/g2^7 + t^4.14/g2^22 + g2^10*t^4.94 + g2^4*t^4.97 + g2*t^4.99 + t^5.01/g2^2 + (2*t^5.03)/g2^5 + t^5.05/g2^8 + t^5.07/g2^11 + t^5.09/g2^14 + (g1^3*t^5.44)/g2^13 + (g2^29*t^5.46)/g1^3 + (g2^23*t^5.5)/g1^3 + (g1^3*t^5.52)/g2^25 + g2^24*t^5.84 + 2*g2^18*t^5.88 + 3*g2^12*t^5.92 + g2^9*t^5.94 + g2^6*t^5.96 + 2*g2^3*t^5.98 - 3*t^6. + t^6.02/g2^3 + t^6.04/g2^6 + t^6.06/g2^9 + t^6.12/g2^18 + t^6.21/g2^33 + (g1^3*t^6.45)/g2^14 + (g2^28*t^6.46)/g1^3 + (g2^22*t^6.5)/g1^3 + (g1^3*t^6.52)/g2^26 + g2^17*t^6.89 + g2^14*t^6.91 + 2*g2^11*t^6.93 + 2*g2^8*t^6.95 + 3*g2^5*t^6.97 + 2*g2^2*t^6.99 + (2*t^7.01)/g2 + t^7.03/g2^4 + t^7.05/g2^7 + (2*t^7.06)/g2^10 + (2*t^7.1)/g2^16 + t^7.12/g2^19 + t^7.14/g2^22 + t^7.16/g2^25 + (g1^3*t^7.37)/g2^3 + (g2^33*t^7.43)/g1^3 + (g1^3*t^7.45)/g2^15 - (g2^30*t^7.45)/g1^3 - (g1^3*t^7.47)/g2^18 + (g2^27*t^7.47)/g1^3 + (g2^21*t^7.51)/g1^3 + (g1^3*t^7.53)/g2^27 + (g2^15*t^7.55)/g1^3 + (g2^12*t^7.57)/g1^3 + (g1^3*t^7.59)/g2^36 + (g1^3*t^7.61)/g2^39 + g2^22*t^7.86 + 3*g2^16*t^7.9 + 4*g2^10*t^7.94 + 3*g2^7*t^7.95 + 4*g2^4*t^7.97 + 4*g2*t^7.99 + (4*t^8.01)/g2^2 + (2*t^8.03)/g2^5 + (3*t^8.05)/g2^8 - (2*t^8.07)/g2^11 + t^8.09/g2^14 + t^8.11/g2^17 + t^8.13/g2^20 + t^8.19/g2^29 + t^8.29/g2^44 + (g1^3*t^8.36)/g2 + (g2^41*t^8.38)/g1^3 + (g1^3*t^8.4)/g2^7 + (2*g2^35*t^8.42)/g1^3 + (g1^3*t^8.44)/g2^13 + (g1^3*t^8.46)/g2^16 + (g2^29*t^8.46)/g1^3 + (g2^26*t^8.48)/g1^3 - (g2^23*t^8.5)/g1^3 + (g2^20*t^8.52)/g1^3 + (g1^3*t^8.54)/g2^28 - (g2^17*t^8.54)/g1^3 - (g1^3*t^8.56)/g2^31 + g2^36*t^8.77 + 2*g2^30*t^8.81 + 3*g2^24*t^8.84 + g2^21*t^8.86 + 3*g2^18*t^8.88 + 3*g2^15*t^8.9 - 3*g2^12*t^8.92 + 5*g2^9*t^8.94 - 5*g2^6*t^8.96 + 4*g2^3*t^8.98 - t^4.01/(g2*y) - t^5.01/(g2^2*y) - t^6.08/(g2^12*y) - (g2^11*t^6.93)/y - (2*g2^5*t^6.97)/y - t^7.01/(g2*y) - t^7.03/(g2^4*y) - t^7.08/(g2^13*y) - (2*g2^4*t^7.97)/y + (g2*t^7.99)/y - t^8.01/(g2^2*y) + t^8.03/(g2^5*y) + t^8.07/(g2^11*y) + t^8.09/(g2^14*y) - t^8.15/(g2^23*y) + (2*g2^18*t^8.88)/y + (2*g2^12*t^8.92)/y + (g2^9*t^8.94)/y + (2*g2^6*t^8.96)/y + (g2^3*t^8.98)/y - (t^4.01*y)/g2 - (t^5.01*y)/g2^2 - (t^6.08*y)/g2^12 - g2^11*t^6.93*y - 2*g2^5*t^6.97*y - (t^7.01*y)/g2 - (t^7.03*y)/g2^4 - (t^7.08*y)/g2^13 - 2*g2^4*t^7.97*y + g2*t^7.99*y - (t^8.01*y)/g2^2 + (t^8.03*y)/g2^5 + (t^8.07*y)/g2^11 + (t^8.09*y)/g2^14 - (t^8.15*y)/g2^23 + 2*g2^18*t^8.88*y + 2*g2^12*t^8.92*y + g2^9*t^8.94*y + 2*g2^6*t^8.96*y + g2^3*t^8.98*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57335 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ 1.4541 1.6446 0.8841 [X:[1.3279], M:[0.9838], q:[0.4878, 0.5039], qb:[0.5122, 0.4799], phi:[0.336]] t^2.903 + 2*t^2.951 + t^3. + t^3.024 + t^3.911 + t^3.96 + t^3.984 + t^4.008 + t^4.057 + t^4.919 + t^4.968 + t^5.016 + t^5.065 + t^5.424 + t^5.447 + t^5.495 + t^5.521 + t^5.806 + 2*t^5.854 + 3*t^5.903 + t^5.927 + t^5.951 + 2*t^5.976 - 3*t^6. - t^4.008/y - t^5.016/y - t^4.008*y - t^5.016*y detail