Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58107 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ 1.4381 1.6279 0.8834 [X:[1.3293], M:[0.9878], q:[0.5467, 0.559], qb:[0.4533, 0.4288], phi:[0.3354]] [X:[[6]], M:[[18]], q:[[13], [-5]], qb:[[-13], [23]], phi:[[-3]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$ ${}$ -2 t^2.93 + 2*t^2.96 + t^3. + t^3.02 + t^3.93 + t^3.97 + t^3.99 + t^4.01 + t^4.04 + 2*t^4.94 + t^4.98 + 2*t^5.01 + t^5.05 + t^5.85 + 2*t^5.89 + 3*t^5.93 + 2*t^5.94 + 2*t^5.96 + 2*t^5.98 - 2*t^6. + 2*t^6.02 - t^6.07 + t^6.86 + t^6.88 + 3*t^6.9 + t^6.91 + 3*t^6.93 + 4*t^6.95 + 3*t^6.97 + 2*t^6.99 + t^7.01 + 2*t^7.02 + t^7.06 - t^7.08 + t^7.1 + 3*t^7.87 + 5*t^7.9 + 7*t^7.94 + t^7.96 + 6*t^7.98 + t^7.99 + 3*t^8.01 + t^8.03 + t^8.05 + t^8.07 - t^8.09 + t^8.78 + 2*t^8.82 + 3*t^8.85 + 4*t^8.87 + 4*t^8.89 + 6*t^8.91 - t^8.93 + 8*t^8.94 - 4*t^8.96 + 6*t^8.98 - t^4.01/y - t^5.01/y - t^6.93/y - (2*t^6.97)/y - t^7.01/y - t^7.02/y - t^7.94/y - (2*t^7.98)/y - t^8.01/y - t^8.03/y + (2*t^8.89)/y + (2*t^8.93)/y + (2*t^8.96)/y + t^8.98/y - t^4.01*y - t^5.01*y - t^6.93*y - 2*t^6.97*y - t^7.01*y - t^7.02*y - t^7.94*y - 2*t^7.98*y - t^8.01*y - t^8.03*y + 2*t^8.89*y + 2*t^8.93*y + 2*t^8.96*y + t^8.98*y g1^36*t^2.93 + 2*g1^18*t^2.96 + t^3. + t^3.02/g1^9 + g1^33*t^3.93 + g1^15*t^3.97 + g1^6*t^3.99 + t^4.01/g1^3 + t^4.04/g1^21 + 2*g1^30*t^4.94 + g1^12*t^4.98 + (2*t^5.01)/g1^6 + t^5.05/g1^24 + g1^72*t^5.85 + 2*g1^54*t^5.89 + 3*g1^36*t^5.93 + 2*g1^27*t^5.94 + 2*g1^18*t^5.96 + 2*g1^9*t^5.98 - 2*t^6. + (2*t^6.02)/g1^9 - t^6.07/g1^36 + g1^69*t^6.86 + g1^60*t^6.88 + 3*g1^51*t^6.9 + g1^42*t^6.91 + 3*g1^33*t^6.93 + 4*g1^24*t^6.95 + 3*g1^15*t^6.97 + 2*g1^6*t^6.99 + t^7.01/g1^3 + (2*t^7.02)/g1^12 + t^7.06/g1^30 - t^7.08/g1^39 + t^7.1/g1^48 + 3*g1^66*t^7.87 + 5*g1^48*t^7.9 + 7*g1^30*t^7.94 + g1^21*t^7.96 + 6*g1^12*t^7.98 + g1^3*t^7.99 + (3*t^8.01)/g1^6 + t^8.03/g1^15 + t^8.05/g1^24 + t^8.07/g1^33 - t^8.09/g1^42 + g1^108*t^8.78 + 2*g1^90*t^8.82 + 3*g1^72*t^8.85 + 4*g1^63*t^8.87 + 4*g1^54*t^8.89 + 6*g1^45*t^8.91 - g1^36*t^8.93 + 8*g1^27*t^8.94 - 4*g1^18*t^8.96 + 6*g1^9*t^8.98 - t^4.01/(g1^3*y) - t^5.01/(g1^6*y) - (g1^33*t^6.93)/y - (2*g1^15*t^6.97)/y - t^7.01/(g1^3*y) - t^7.02/(g1^12*y) - (g1^30*t^7.94)/y - (2*g1^12*t^7.98)/y - t^8.01/(g1^6*y) - t^8.03/(g1^15*y) + (2*g1^54*t^8.89)/y + (2*g1^36*t^8.93)/y + (2*g1^18*t^8.96)/y + (g1^9*t^8.98)/y - (t^4.01*y)/g1^3 - (t^5.01*y)/g1^6 - g1^33*t^6.93*y - 2*g1^15*t^6.97*y - (t^7.01*y)/g1^3 - (t^7.02*y)/g1^12 - g1^30*t^7.94*y - 2*g1^12*t^7.98*y - (t^8.01*y)/g1^6 - (t^8.03*y)/g1^15 + 2*g1^54*t^8.89*y + 2*g1^36*t^8.93*y + 2*g1^18*t^8.96*y + g1^9*t^8.98*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57335 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ 1.4541 1.6446 0.8841 [X:[1.3279], M:[0.9838], q:[0.4878, 0.5039], qb:[0.5122, 0.4799], phi:[0.336]] t^2.903 + 2*t^2.951 + t^3. + t^3.024 + t^3.911 + t^3.96 + t^3.984 + t^4.008 + t^4.057 + t^4.919 + t^4.968 + t^5.016 + t^5.065 + t^5.424 + t^5.447 + t^5.495 + t^5.521 + t^5.806 + 2*t^5.854 + 3*t^5.903 + t^5.927 + t^5.951 + 2*t^5.976 - 3*t^6. - t^4.008/y - t^5.016/y - t^4.008*y - t^5.016*y detail