Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58095 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}\phi_{1}^{3}$ | 1.4532 | 1.6404 | 0.8859 | [X:[1.3344], M:[0.9967, 1.0016], q:[0.5025, 0.4992], qb:[0.4975, 0.5041], phi:[0.3328]] | [X:[[0, 2]], M:[[0, -6], [0, 3]], q:[[-1, 12], [-1, 6]], qb:[[1, -12], [1, 0]], phi:[[0, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$ | ${}M_{1}M_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$ | 0 | 2*t^2.99 + 2*t^3. + t^3.02 + t^3.99 + 2*t^4. + t^4.01 + t^4.02 + t^4.99 + t^5. + t^5.01 + t^5.02 + 2*t^5.5 + t^5.51 + t^5.52 + 2*t^5.98 + t^5.99 + 2*t^6.01 + t^6.02 + t^6.04 + t^6.49 + t^6.5 + 2*t^6.51 + t^6.98 + 5*t^6.99 + 2*t^7. + 5*t^7.01 + 3*t^7.02 + t^7.03 + t^7.04 + t^7.47 + t^7.49 + t^7.52 + t^7.53 + 2*t^7.98 + 4*t^7.99 + 4*t^8. + 6*t^8.01 + 4*t^8.02 + 2*t^8.03 + 2*t^8.04 - 2*t^8.48 + t^8.49 + t^8.5 + 3*t^8.52 + t^8.54 + 2*t^8.97 + 2*t^8.98 - 2*t^8.99 - t^4./y - t^5./y - (2*t^6.99)/y - (2*t^7.)/y - t^7.02/y - (2*t^7.99)/y - (2*t^8.)/y - t^8.02/y + t^8.98/y + t^8.99/y - t^4.*y - t^5.*y - 2*t^6.99*y - 2*t^7.*y - t^7.02*y - 2*t^7.99*y - 2*t^8.*y - t^8.02*y + t^8.98*y + t^8.99*y | (2*t^2.99)/g2^6 + t^3. + g2^3*t^3. + g2^12*t^3.02 + t^3.99/g2^7 + t^4./g2 + g2^2*t^4. + g2^5*t^4.01 + g2^11*t^4.02 + t^4.99/g2^8 + t^5./g2^2 + g2^4*t^5.01 + g2^10*t^5.02 + (g1^3*t^5.5)/g2^25 + (g2^23*t^5.5)/g1^3 + (g2^29*t^5.51)/g1^3 + (g1^3*t^5.52)/g2^13 + (2*t^5.98)/g2^12 + t^5.99/g2^6 - 3*t^6. + (2*t^6.)/g2^3 + g2^3*t^6. + 2*g2^6*t^6.01 + g2^15*t^6.02 + g2^24*t^6.04 + (g1^3*t^6.49)/g2^26 + (g2^22*t^6.5)/g1^3 + (g1^3*t^6.51)/g2^14 + (g2^28*t^6.51)/g1^3 + t^6.98/g2^13 + (2*t^6.99)/g2^7 + (3*t^6.99)/g2^4 + 2*g2^2*t^7. + 4*g2^5*t^7.01 + g2^8*t^7.01 + g2^11*t^7.02 + 2*g2^14*t^7.02 + g2^17*t^7.03 + g2^23*t^7.04 + (g1^3*t^7.47)/g2^39 + (g1^3*t^7.49)/g2^27 + (g2^15*t^7.49)/g1^3 - (g2^18*t^7.49)/g1^3 - (g1^3*t^7.5)/g2^24 + (g2^21*t^7.5)/g1^3 - (g1^3*t^7.51)/g2^18 + (g1^3*t^7.51)/g2^15 + (g2^27*t^7.51)/g1^3 - (g2^30*t^7.51)/g1^3 + (g2^33*t^7.52)/g1^3 + (g1^3*t^7.53)/g2^3 + (2*t^7.98)/g2^14 + (3*t^7.99)/g2^8 + t^7.99/g2^5 + (3*t^8.)/g2^2 + g2*t^8. + 5*g2^4*t^8.01 + g2^7*t^8.01 + 3*g2^10*t^8.02 + g2^13*t^8.02 + 2*g2^16*t^8.03 + 2*g2^22*t^8.04 - (g1^3*t^8.48)/g2^37 - (g2^11*t^8.48)/g1^3 + (g1^3*t^8.49)/g2^31 - (g1^3*t^8.5)/g2^25 + (g1^3*t^8.5)/g2^22 + (g2^23*t^8.5)/g1^3 + (g2^26*t^8.51)/g1^3 - (g2^29*t^8.51)/g1^3 + (g1^3*t^8.52)/g2^13 + (g1^3*t^8.52)/g2^10 + (g2^32*t^8.52)/g1^3 - (g1^3*t^8.53)/g2^7 + (g2^41*t^8.53)/g1^3 + (g1^3*t^8.54)/g2 + (2*t^8.97)/g2^18 + t^8.98/g2^15 + t^8.98/g2^12 + (4*t^8.99)/g2^9 - (6*t^8.99)/g2^6 - t^4./(g2*y) - t^5./(g2^2*y) - (2*t^6.99)/(g2^7*y) - t^7./(g2*y) - (g2^2*t^7.)/y - (g2^11*t^7.02)/y - (2*t^7.99)/(g2^8*y) - t^8./(g2^2*y) - (g2*t^8.)/y - (g2^10*t^8.02)/y + t^8.98/(g2^12*y) - t^8.99/(g2^9*y) + (2*t^8.99)/(g2^6*y) - (t^4.*y)/g2 - (t^5.*y)/g2^2 - (2*t^6.99*y)/g2^7 - (t^7.*y)/g2 - g2^2*t^7.*y - g2^11*t^7.02*y - (2*t^7.99*y)/g2^8 - (t^8.*y)/g2^2 - g2*t^8.*y - g2^10*t^8.02*y + (t^8.98*y)/g2^12 - (t^8.99*y)/g2^9 + (2*t^8.99*y)/g2^6 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57333 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ | 1.4535 | 1.6404 | 0.8861 | [X:[1.3366], M:[0.9901], q:[0.5074, 0.4975], qb:[0.4926, 0.5124], phi:[0.3317]] | 2*t^2.97 + t^2.985 + t^3. + t^3.059 + t^3.965 + t^3.995 + t^4.01 + t^4.025 + t^4.054 + t^4.96 + t^4.99 + t^5.02 + t^5.049 + t^5.488 + t^5.502 + t^5.532 + t^5.547 + 2*t^5.941 + 2*t^5.955 + 2*t^5.97 + t^5.985 - 3*t^6. - t^3.995/y - t^4.99/y - t^3.995*y - t^4.99*y | detail |