Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58087 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ | 1.4535 | 1.6404 | 0.8861 | [X:[1.3366], M:[0.9804, 1.0098], q:[0.5073, 0.4975], qb:[0.4927, 0.5123], phi:[0.3317]] | [X:[[0, 2]], M:[[0, -12], [0, 6]], q:[[-1, 12], [-1, 6]], qb:[[1, -12], [1, 0]], phi:[[0, -1]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{6}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$ | ${}$ | -3 | t^2.94 + t^2.99 + t^3. + 2*t^3.03 + t^3.97 + t^4. + t^4.01 + t^4.02 + t^4.05 + t^4.96 + t^4.99 + t^5.02 + t^5.05 + t^5.49 + t^5.5 + t^5.53 + t^5.55 + t^5.88 + t^5.93 + 2*t^5.97 + t^5.99 - 3*t^6. + 2*t^6.01 + t^6.03 + 2*t^6.06 + t^6.48 + t^6.5 + t^6.53 + t^6.54 + t^6.91 + 2*t^6.95 + t^6.97 + t^6.98 + 2*t^7. + 2*t^7.01 + 2*t^7.02 + 3*t^7.04 + 2*t^7.05 + 2*t^7.08 + t^7.42 + t^7.46 + t^7.55 + t^7.6 + t^7.9 + t^7.93 + t^7.95 + 2*t^7.96 + t^7.98 + 4*t^7.99 + t^8. + 4*t^8.02 + t^8.03 + 4*t^8.05 + 3*t^8.08 + t^8.11 - t^8.46 + t^8.49 - t^8.5 + t^8.52 + 2*t^8.53 + t^8.56 + t^8.58 + t^8.82 + t^8.87 + 2*t^8.91 + t^8.93 - 3*t^8.94 + 4*t^8.96 + t^8.99 + t^8.99/y^2 - t^4./y - t^4.99/y - t^6.94/y - t^6.98/y - t^7./y - (2*t^7.02)/y - t^7.93/y - t^7.98/y - t^7.99/y - (2*t^8.02)/y + t^8.93/y + t^8.94/y - t^8.96/y + (2*t^8.97)/y - t^4.*y - t^4.99*y - t^6.94*y - t^6.98*y - t^7.*y - 2*t^7.02*y - t^7.93*y - t^7.98*y - t^7.99*y - 2*t^8.02*y + t^8.93*y + t^8.94*y - t^8.96*y + 2*t^8.97*y + t^8.99*y^2 | t^2.94/g2^12 + t^2.99/g2^3 + t^3. + 2*g2^6*t^3.03 + t^3.97/g2^7 + t^4./g2 + g2^2*t^4.01 + g2^5*t^4.02 + g2^11*t^4.05 + t^4.96/g2^8 + t^4.99/g2^2 + g2^4*t^5.02 + g2^10*t^5.05 + (g1^3*t^5.49)/g2^25 + (g2^23*t^5.5)/g1^3 + (g2^29*t^5.53)/g1^3 + (g1^3*t^5.55)/g2^13 + t^5.88/g2^24 + t^5.93/g2^15 + (2*t^5.97)/g2^6 + t^5.99/g2^3 - 3*t^6. + 2*g2^3*t^6.01 + g2^6*t^6.03 + 2*g2^12*t^6.06 + (g1^3*t^6.48)/g2^26 + (g2^22*t^6.5)/g1^3 + (g2^28*t^6.53)/g1^3 + (g1^3*t^6.54)/g2^14 + t^6.91/g2^19 + (2*t^6.95)/g2^10 + t^6.97/g2^7 + t^6.98/g2^4 + (2*t^7.)/g2 + 2*g2^2*t^7.01 + 2*g2^5*t^7.02 + 3*g2^8*t^7.04 + 2*g2^11*t^7.05 + 2*g2^17*t^7.08 + (g1^3*t^7.42)/g2^39 + (g2^15*t^7.46)/g1^3 + (g1^3*t^7.48)/g2^27 - (g2^18*t^7.48)/g1^3 - (g1^3*t^7.49)/g2^24 + (g2^21*t^7.49)/g1^3 - (g1^3*t^7.52)/g2^18 + (g2^27*t^7.52)/g1^3 + (g1^3*t^7.54)/g2^15 - (g2^30*t^7.54)/g1^3 + (g2^33*t^7.55)/g1^3 + (g1^3*t^7.6)/g2^3 + t^7.9/g2^20 + t^7.93/g2^14 + t^7.95/g2^11 + (2*t^7.96)/g2^8 + t^7.98/g2^5 + (4*t^7.99)/g2^2 + g2*t^8. + 4*g2^4*t^8.02 + g2^7*t^8.03 + 4*g2^10*t^8.05 + 3*g2^16*t^8.08 + g2^22*t^8.11 - (g1^3*t^8.46)/g2^31 + (g1^3*t^8.47)/g2^28 - (g2^17*t^8.47)/g1^3 + (g2^20*t^8.49)/g1^3 - (g2^23*t^8.5)/g1^3 + (g2^26*t^8.52)/g1^3 + (g1^3*t^8.53)/g2^16 + (g2^29*t^8.53)/g1^3 + (g2^35*t^8.56)/g1^3 + (g1^3*t^8.58)/g2^7 + t^8.82/g2^36 + t^8.87/g2^27 + (2*t^8.91)/g2^18 + t^8.93/g2^15 - (3*t^8.94)/g2^12 + (4*t^8.96)/g2^9 + t^8.99/g2^3 + t^8.99/(g2^3*y^2) - t^4./(g2*y) - t^4.99/(g2^2*y) - t^6.94/(g2^13*y) - t^6.98/(g2^4*y) - t^7./(g2*y) - (2*g2^5*t^7.02)/y - t^7.93/(g2^14*y) - t^7.98/(g2^5*y) - t^7.99/(g2^2*y) - (2*g2^4*t^8.02)/y + t^8.93/(g2^15*y) + t^8.94/(g2^12*y) - t^8.96/(g2^9*y) + (2*t^8.97)/(g2^6*y) - (t^4.*y)/g2 - (t^4.99*y)/g2^2 - (t^6.94*y)/g2^13 - (t^6.98*y)/g2^4 - (t^7.*y)/g2 - 2*g2^5*t^7.02*y - (t^7.93*y)/g2^14 - (t^7.98*y)/g2^5 - (t^7.99*y)/g2^2 - 2*g2^4*t^8.02*y + (t^8.93*y)/g2^15 + (t^8.94*y)/g2^12 - (t^8.96*y)/g2^9 + (2*t^8.97*y)/g2^6 + (t^8.99*y^2)/g2^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57332 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ | 1.455 | 1.6425 | 0.8858 | [X:[1.3409], M:[0.9544], q:[0.5169, 0.4941], qb:[0.4831, 0.5287], phi:[0.3295]] | t^2.863 + t^2.932 + t^2.966 + t^3. + t^3.068 + t^3.92 + t^3.989 + t^4.023 + t^4.057 + t^4.126 + t^4.909 + t^4.977 + t^5.046 + t^5.114 + t^5.473 + t^5.504 + t^5.572 + t^5.61 + t^5.726 + t^5.795 + t^5.829 + t^5.863 + t^5.897 + 2*t^5.932 + t^5.966 - 2*t^6. - t^3.989/y - t^4.977/y - t^3.989*y - t^4.977*y | detail |