Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58084 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ | 1.4398 | 1.6273 | 0.8848 | [X:[1.3415], M:[0.9509], q:[0.5733, 0.5487], qb:[0.4267, 0.4758], phi:[0.3292]] | [X:[[6]], M:[[-36]], q:[[13], [-5]], qb:[[-13], [23]], phi:[[-3]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{6}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ | ${}$ | -1 | t^2.85 + t^2.93 + t^2.96 + t^3. + t^3.07 + t^3.91 + t^3.99 + t^4.02 + t^4.06 + t^4.14 + t^4.9 + 2*t^4.98 + t^5.05 + 2*t^5.12 + t^5.71 + t^5.78 + t^5.82 + t^5.85 + t^5.89 + 2*t^5.93 + 2*t^5.96 - t^6. + t^6.04 + t^6.07 + t^6.11 + t^6.77 + t^6.8 + t^6.84 + 2*t^6.88 + 2*t^6.91 + 3*t^6.95 + 2*t^6.99 + 2*t^7.02 + 2*t^7.06 + 3*t^7.1 + t^7.14 + t^7.21 + t^7.25 + t^7.75 + 2*t^7.83 + t^7.86 + 4*t^7.9 + t^7.94 + 5*t^7.98 + t^8.01 + 5*t^8.05 + t^8.09 + 4*t^8.12 + 2*t^8.2 + t^8.27 + t^8.56 + t^8.63 + t^8.67 + t^8.71 + t^8.74 + 2*t^8.78 + 2*t^8.82 - t^8.85 + 5*t^8.89 - t^8.93 + 4*t^8.96 + t^8.96/y^2 - t^3.99/y - t^4.98/y - t^6.84/y - t^6.91/y - t^6.95/y - t^6.99/y - t^7.06/y - t^7.83/y - t^7.9/y - t^7.94/y - t^7.98/y - t^8.05/y + t^8.78/y + t^8.82/y + t^8.85/y + (2*t^8.93)/y - t^3.99*y - t^4.98*y - t^6.84*y - t^6.91*y - t^6.95*y - t^6.99*y - t^7.06*y - t^7.83*y - t^7.9*y - t^7.94*y - t^7.98*y - t^8.05*y + t^8.78*y + t^8.82*y + t^8.85*y + 2*t^8.93*y + t^8.96*y^2 | t^2.85/g1^36 + t^2.93/g1^18 + t^2.96/g1^9 + t^3. + g1^18*t^3.07 + t^3.91/g1^21 + t^3.99/g1^3 + g1^6*t^4.02 + g1^15*t^4.06 + g1^33*t^4.14 + t^4.9/g1^24 + (2*t^4.98)/g1^6 + g1^12*t^5.05 + 2*g1^30*t^5.12 + t^5.71/g1^72 + t^5.78/g1^54 + t^5.82/g1^45 + t^5.85/g1^36 + t^5.89/g1^27 + (2*t^5.93)/g1^18 + (2*t^5.96)/g1^9 - t^6. + g1^9*t^6.04 + g1^18*t^6.07 + g1^27*t^6.11 + t^6.77/g1^57 + t^6.8/g1^48 + t^6.84/g1^39 + (2*t^6.88)/g1^30 + (2*t^6.91)/g1^21 + (3*t^6.95)/g1^12 + (2*t^6.99)/g1^3 + 2*g1^6*t^7.02 + 2*g1^15*t^7.06 + 3*g1^24*t^7.1 + g1^33*t^7.14 + g1^51*t^7.21 + g1^60*t^7.25 + t^7.75/g1^60 + (2*t^7.83)/g1^42 + t^7.86/g1^33 + (4*t^7.9)/g1^24 + t^7.94/g1^15 + (5*t^7.98)/g1^6 + g1^3*t^8.01 + 5*g1^12*t^8.05 + g1^21*t^8.09 + 4*g1^30*t^8.12 + 2*g1^48*t^8.2 + g1^66*t^8.27 + t^8.56/g1^108 + t^8.63/g1^90 + t^8.67/g1^81 + t^8.71/g1^72 + t^8.74/g1^63 + (2*t^8.78)/g1^54 + (2*t^8.82)/g1^45 - t^8.85/g1^36 + (5*t^8.89)/g1^27 - t^8.93/g1^18 + (4*t^8.96)/g1^9 + t^8.96/(g1^9*y^2) - t^3.99/(g1^3*y) - t^4.98/(g1^6*y) - t^6.84/(g1^39*y) - t^6.91/(g1^21*y) - t^6.95/(g1^12*y) - t^6.99/(g1^3*y) - (g1^15*t^7.06)/y - t^7.83/(g1^42*y) - t^7.9/(g1^24*y) - t^7.94/(g1^15*y) - t^7.98/(g1^6*y) - (g1^12*t^8.05)/y + t^8.78/(g1^54*y) + t^8.82/(g1^45*y) + t^8.85/(g1^36*y) + (2*t^8.93)/(g1^18*y) - (t^3.99*y)/g1^3 - (t^4.98*y)/g1^6 - (t^6.84*y)/g1^39 - (t^6.91*y)/g1^21 - (t^6.95*y)/g1^12 - (t^6.99*y)/g1^3 - g1^15*t^7.06*y - (t^7.83*y)/g1^42 - (t^7.9*y)/g1^24 - (t^7.94*y)/g1^15 - (t^7.98*y)/g1^6 - g1^12*t^8.05*y + (t^8.78*y)/g1^54 + (t^8.82*y)/g1^45 + (t^8.85*y)/g1^36 + (2*t^8.93*y)/g1^18 + (t^8.96*y^2)/g1^9 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57332 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ | 1.455 | 1.6425 | 0.8858 | [X:[1.3409], M:[0.9544], q:[0.5169, 0.4941], qb:[0.4831, 0.5287], phi:[0.3295]] | t^2.863 + t^2.932 + t^2.966 + t^3. + t^3.068 + t^3.92 + t^3.989 + t^4.023 + t^4.057 + t^4.126 + t^4.909 + t^4.977 + t^5.046 + t^5.114 + t^5.473 + t^5.504 + t^5.572 + t^5.61 + t^5.726 + t^5.795 + t^5.829 + t^5.863 + t^5.897 + 2*t^5.932 + t^5.966 - 2*t^6. - t^3.989/y - t^4.977/y - t^3.989*y - t^4.977*y | detail |