Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58077 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ | 1.4621 | 1.6651 | 0.8781 | [X:[1.3422], M:[0.6978], q:[0.4785, 0.4519], qb:[0.5215, 0.5748], phi:[0.3289]] | [X:[[6]], M:[[21]], q:[[23], [5]], qb:[[-23], [13]], phi:[[-3]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{6}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$ | ${}$ | -1 | t^2.09 + t^2.92 + t^2.96 + t^3. + t^3.08 + t^3.16 + t^3.99 + t^4.03 + t^4.07 + t^4.15 + t^4.19 + t^4.89 + t^4.97 + t^5.01 + 2*t^5.05 + t^5.09 + 2*t^5.13 + t^5.17 + t^5.21 + t^5.25 + t^5.84 + t^5.88 + t^5.92 + t^5.96 - t^6. + t^6.04 + 2*t^6.08 + 3*t^6.12 + 2*t^6.16 + t^6.2 + 2*t^6.24 + t^6.28 + t^6.32 + 2*t^6.95 + 2*t^6.99 + 3*t^7.03 + 2*t^7.07 + 4*t^7.11 + 4*t^7.15 + 3*t^7.19 + 3*t^7.23 + 2*t^7.27 + 2*t^7.31 + t^7.35 + t^7.65 + t^7.81 + t^7.89 + 3*t^7.97 + 2*t^8.01 + 4*t^8.05 + t^8.09 + 6*t^8.13 + 3*t^8.17 + 6*t^8.21 + 2*t^8.25 + 4*t^8.29 + 2*t^8.33 + 2*t^8.37 + t^8.41 - t^8.68 + t^8.8 + 2*t^8.88 - 2*t^8.92 + t^8.96 + t^8.96/y^2 - t^3.99/y - t^4.97/y - t^6.08/y - t^6.91/y - t^6.95/y - t^6.99/y - (2*t^7.07)/y - t^7.15/y - t^7.93/y - t^7.97/y + t^8.01/y + t^8.09/y - t^8.13/y + t^8.25/y + t^8.88/y + t^8.92/y - t^3.99*y - t^4.97*y - t^6.08*y - t^6.91*y - t^6.95*y - t^6.99*y - 2*t^7.07*y - t^7.15*y - t^7.93*y - t^7.97*y + t^8.01*y + t^8.09*y - t^8.13*y + t^8.25*y + t^8.88*y + t^8.92*y + t^8.96*y^2 | g1^21*t^2.09 + t^2.92/g1^18 + t^2.96/g1^9 + t^3. + g1^18*t^3.08 + g1^36*t^3.16 + t^3.99/g1^3 + g1^6*t^4.03 + g1^15*t^4.07 + g1^33*t^4.15 + g1^42*t^4.19 + t^4.89/g1^24 + t^4.97/g1^6 + g1^3*t^5.01 + 2*g1^12*t^5.05 + g1^21*t^5.09 + 2*g1^30*t^5.13 + g1^39*t^5.17 + g1^48*t^5.21 + g1^57*t^5.25 + t^5.84/g1^36 + t^5.88/g1^27 + t^5.92/g1^18 + t^5.96/g1^9 - t^6. + g1^9*t^6.04 + 2*g1^18*t^6.08 + 3*g1^27*t^6.12 + 2*g1^36*t^6.16 + g1^45*t^6.2 + 2*g1^54*t^6.24 + g1^63*t^6.28 + g1^72*t^6.32 + (2*t^6.95)/g1^12 + (2*t^6.99)/g1^3 + 3*g1^6*t^7.03 + 2*g1^15*t^7.07 + 4*g1^24*t^7.11 + 4*g1^33*t^7.15 + 3*g1^42*t^7.19 + 3*g1^51*t^7.23 + 2*g1^60*t^7.27 + 2*g1^69*t^7.31 + g1^78*t^7.35 + t^7.65/g1^78 + t^7.81/g1^42 + t^7.89/g1^24 + (3*t^7.97)/g1^6 + 2*g1^3*t^8.01 + 4*g1^12*t^8.05 + g1^21*t^8.09 + 6*g1^30*t^8.13 + 3*g1^39*t^8.17 + 6*g1^48*t^8.21 + 2*g1^57*t^8.25 + 4*g1^66*t^8.29 + 2*g1^75*t^8.33 + 2*g1^84*t^8.37 + g1^93*t^8.41 - t^8.68/g1^72 + t^8.8/g1^45 + (2*t^8.88)/g1^27 - (2*t^8.92)/g1^18 + t^8.96/g1^9 + t^8.96/(g1^9*y^2) - t^3.99/(g1^3*y) - t^4.97/(g1^6*y) - (g1^18*t^6.08)/y - t^6.91/(g1^21*y) - t^6.95/(g1^12*y) - t^6.99/(g1^3*y) - (2*g1^15*t^7.07)/y - (g1^33*t^7.15)/y - t^7.93/(g1^15*y) - t^7.97/(g1^6*y) + (g1^3*t^8.01)/y + (g1^21*t^8.09)/y - (g1^30*t^8.13)/y + (g1^57*t^8.25)/y + t^8.88/(g1^27*y) + t^8.92/(g1^18*y) - (t^3.99*y)/g1^3 - (t^4.97*y)/g1^6 - g1^18*t^6.08*y - (t^6.91*y)/g1^21 - (t^6.95*y)/g1^12 - (t^6.99*y)/g1^3 - 2*g1^15*t^7.07*y - g1^33*t^7.15*y - (t^7.93*y)/g1^15 - (t^7.97*y)/g1^6 + g1^3*t^8.01*y + g1^21*t^8.09*y - g1^30*t^8.13*y + g1^57*t^8.25*y + (t^8.88*y)/g1^27 + (t^8.92*y)/g1^18 + (t^8.96*y^2)/g1^9 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57326 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ | 1.4415 | 1.6254 | 0.8869 | [X:[1.3429], q:[0.4811, 0.4524], qb:[0.5189, 0.5763], phi:[0.3286]] | t^2.914 + t^2.957 + t^3. + t^3.086 + t^3.172 + t^3.9 + t^3.986 + t^4.029 + t^4.072 + t^4.158 + t^4.885 + t^4.971 + t^5.057 + 2*t^5.143 + t^5.229 + t^5.828 + t^5.871 + t^5.914 + t^5.957 - t^6. - t^3.986/y - t^4.971/y - t^3.986*y - t^4.971*y | detail |