Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58076 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ + ${ }M_{1}q_{1}\tilde{q}_{2}$ | 1.4485 | 1.636 | 0.8854 | [X:[1.3488], M:[0.9073], q:[0.5037, 0.4573], qb:[0.4963, 0.589], phi:[0.3256]] | [X:[[6]], M:[[-36]], q:[[23], [5]], qb:[[-23], [13]], phi:[[-3]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{6}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$ | ${}$ | -1 | t^2.72 + t^2.86 + t^2.93 + t^3. + t^3.14 + t^3.84 + t^3.98 + t^4.05 + t^4.12 + t^4.26 + t^4.81 + t^4.95 + t^5.09 + 2*t^5.23 + t^5.37 + t^5.44 + t^5.58 + t^5.65 + 2*t^5.72 + t^5.79 + 2*t^5.86 + t^5.93 - t^6. + t^6.07 + t^6.21 + t^6.35 + t^6.56 + 2*t^6.7 + 2*t^6.77 + 2*t^6.84 + 2*t^6.91 + 3*t^6.98 + 3*t^7.05 + t^7.12 + 3*t^7.19 + t^7.26 + t^7.32 + t^7.4 + t^7.46 + t^7.54 + 3*t^7.68 + 3*t^7.81 + 5*t^7.95 + t^8.02 + 4*t^8.09 + 2*t^8.16 + t^8.17 + 4*t^8.23 + 2*t^8.3 + 3*t^8.37 + t^8.44 + 2*t^8.51 + 2*t^8.58 + 3*t^8.65 - t^8.72 + 4*t^8.79 - 2*t^8.86 + 3*t^8.93 + t^8.93/y^2 - t^3.98/y - t^4.95/y - t^6.7/y - t^6.84/y - t^6.91/y - t^6.98/y - t^7.12/y - t^7.68/y - t^7.81/y - t^7.88/y - t^7.95/y - t^8.09/y + t^8.58/y + t^8.65/y + t^8.72/y + (2*t^8.86)/y - t^3.98*y - t^4.95*y - t^6.7*y - t^6.84*y - t^6.91*y - t^6.98*y - t^7.12*y - t^7.68*y - t^7.81*y - t^7.88*y - t^7.95*y - t^8.09*y + t^8.58*y + t^8.65*y + t^8.72*y + 2*t^8.86*y + t^8.93*y^2 | t^2.72/g1^36 + t^2.86/g1^18 + t^2.93/g1^9 + t^3. + g1^18*t^3.14 + t^3.84/g1^21 + t^3.98/g1^3 + g1^6*t^4.05 + g1^15*t^4.12 + g1^33*t^4.26 + t^4.81/g1^24 + t^4.95/g1^6 + g1^12*t^5.09 + 2*g1^30*t^5.23 + g1^48*t^5.37 + t^5.44/g1^72 + t^5.58/g1^54 + t^5.65/g1^45 + (2*t^5.72)/g1^36 + t^5.79/g1^27 + (2*t^5.86)/g1^18 + t^5.93/g1^9 - t^6. + g1^9*t^6.07 + g1^27*t^6.21 + g1^45*t^6.35 + t^6.56/g1^57 + (2*t^6.7)/g1^39 + (2*t^6.77)/g1^30 + (2*t^6.84)/g1^21 + (2*t^6.91)/g1^12 + (3*t^6.98)/g1^3 + 3*g1^6*t^7.05 + g1^15*t^7.12 + 3*g1^24*t^7.19 + g1^33*t^7.26 + g1^42*t^7.32 + t^7.4/g1^78 + g1^60*t^7.46 + t^7.54/g1^60 + (3*t^7.68)/g1^42 + (3*t^7.81)/g1^24 + (5*t^7.95)/g1^6 + g1^3*t^8.02 + 4*g1^12*t^8.09 + 2*g1^21*t^8.16 + t^8.17/g1^108 + 4*g1^30*t^8.23 + t^8.3/g1^90 + g1^39*t^8.3 + t^8.37/g1^81 + 2*g1^48*t^8.37 + t^8.44/g1^72 + t^8.51/g1^63 + g1^66*t^8.51 + (2*t^8.58)/g1^54 + (3*t^8.65)/g1^45 - t^8.72/g1^36 + (4*t^8.79)/g1^27 - (2*t^8.86)/g1^18 + (3*t^8.93)/g1^9 + t^8.93/(g1^9*y^2) - t^3.98/(g1^3*y) - t^4.95/(g1^6*y) - t^6.7/(g1^39*y) - t^6.84/(g1^21*y) - t^6.91/(g1^12*y) - t^6.98/(g1^3*y) - (g1^15*t^7.12)/y - t^7.68/(g1^42*y) - t^7.81/(g1^24*y) - t^7.88/(g1^15*y) - t^7.95/(g1^6*y) - (g1^12*t^8.09)/y + t^8.58/(g1^54*y) + t^8.65/(g1^45*y) + t^8.72/(g1^36*y) + (2*t^8.86)/(g1^18*y) - (t^3.98*y)/g1^3 - (t^4.95*y)/g1^6 - (t^6.7*y)/g1^39 - (t^6.84*y)/g1^21 - (t^6.91*y)/g1^12 - (t^6.98*y)/g1^3 - g1^15*t^7.12*y - (t^7.68*y)/g1^42 - (t^7.81*y)/g1^24 - (t^7.88*y)/g1^15 - (t^7.95*y)/g1^6 - g1^12*t^8.09*y + (t^8.58*y)/g1^54 + (t^8.65*y)/g1^45 + (t^8.72*y)/g1^36 + (2*t^8.86*y)/g1^18 + (t^8.93*y^2)/g1^9 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57326 | SU3adj1nf2 | ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ | 1.4415 | 1.6254 | 0.8869 | [X:[1.3429], q:[0.4811, 0.4524], qb:[0.5189, 0.5763], phi:[0.3286]] | t^2.914 + t^2.957 + t^3. + t^3.086 + t^3.172 + t^3.9 + t^3.986 + t^4.029 + t^4.072 + t^4.158 + t^4.885 + t^4.971 + t^5.057 + 2*t^5.143 + t^5.229 + t^5.828 + t^5.871 + t^5.914 + t^5.957 - t^6. - t^3.986/y - t^4.971/y - t^3.986*y - t^4.971*y | detail |