Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
58038 SU3adj1nf2 ${}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}q_{1}q_{2}^{2}$ 1.0946 1.1931 0.9174 [X:[1.5498], M:[1.1256], q:[0.9092, 0.4328], qb:[0.8657, 0.4415], phi:[0.2251]] [X:[[2]], M:[[-5]], q:[[-7], [4]], qb:[[8], [1]], phi:[[-1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{6}$, ${ }q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{4}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{2}^{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$ ${}\phi_{1}^{5}q_{2}\tilde{q}_{2}$ 0 t^2.03 + t^3.3 + t^3.38 + t^3.9 + t^3.97 + 2*t^4.05 + t^4.65 + 2*t^5.32 + t^5.4 + 2*t^5.92 + t^6.08 + t^6.6 + t^6.68 + t^6.75 + t^7.19 + t^7.27 + 3*t^7.35 + t^7.43 + t^7.79 + t^7.87 + 2*t^7.95 + 2*t^8.03 + 2*t^8.1 + t^8.54 + t^8.78 + t^8.03/y^2 - t^8.7/y^2 - t^3.68/y - t^4.35/y - t^5.7/y - t^6.38/y - t^7.05/y - t^7.57/y - t^7.65/y - (3*t^7.73)/y + t^8.32/y + t^8.92/y - t^3.68*y - t^4.35*y - t^5.7*y - t^6.38*y - t^7.05*y - t^7.57*y - t^7.65*y - 3*t^7.73*y + t^8.32*y + t^8.92*y + t^8.03*y^2 - t^8.7*y^2 t^2.03/g1^3 + g1^4*t^3.3 + t^3.38/g1^5 + g1^12*t^3.9 + g1^3*t^3.97 + (2*t^4.05)/g1^6 + g1^2*t^4.65 + 2*g1*t^5.32 + t^5.4/g1^8 + 2*g1^9*t^5.92 + t^6.08/g1^9 + g1^8*t^6.6 + t^6.68/g1 + t^6.75/g1^10 + g1^16*t^7.19 + g1^7*t^7.27 + (3*t^7.35)/g1^2 + t^7.43/g1^11 + g1^24*t^7.79 + g1^15*t^7.87 + 2*g1^6*t^7.95 + (2*t^8.03)/g1^3 + (2*t^8.1)/g1^12 + g1^14*t^8.54 + t^8.78/g1^13 + t^8.03/(g1^3*y^2) - t^8.7/(g1^4*y^2) - t^3.68/(g1*y) - t^4.35/(g1^2*y) - t^5.7/(g1^4*y) - t^6.38/(g1^5*y) - t^7.05/(g1^6*y) - (g1^11*t^7.57)/y - (g1^2*t^7.65)/y - (3*t^7.73)/(g1^7*y) + (g1*t^8.32)/y + (g1^9*t^8.92)/y - (t^3.68*y)/g1 - (t^4.35*y)/g1^2 - (t^5.7*y)/g1^4 - (t^6.38*y)/g1^5 - (t^7.05*y)/g1^6 - g1^11*t^7.57*y - g1^2*t^7.65*y - (3*t^7.73*y)/g1^7 + g1*t^8.32*y + g1^9*t^8.92*y + (t^8.03*y^2)/g1^3 - (t^8.7*y^2)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57322 SU3adj1nf2 ${}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ 1.0952 1.1953 0.9163 [X:[1.5424], M:[1.1441], q:[0.8856, 0.4181], qb:[0.8856, 0.4379], phi:[0.2288]] t^2.059 + t^3.254 + t^3.432 + t^3.911 + t^3.941 + t^3.97 + t^4.119 + t^4.627 + 2*t^5.314 + t^5.492 + t^5.822 + t^5.852 + t^5.97 - t^6. - t^3.686/y - t^4.373/y - t^5.746/y - t^3.686*y - t^4.373*y - t^5.746*y detail