Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58033 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ + ${ }M_{4}q_{1}\tilde{q}_{2}$ | 1.4689 | 1.6564 | 0.8868 | [X:[1.3962], M:[0.9057, 0.9057, 0.9057, 0.9057], q:[0.5471, 0.5471], qb:[0.5471, 0.5471], phi:[0.3019]] | [X:[[0, 0, 0, 2]], M:[[1, 0, 1, -6], [-1, 0, -1, 0], [-1, -1, 0, 0], [1, 1, 0, -6]], q:[[-1, -1, -1, 6], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0]], phi:[[0, 0, 0, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }M_{2}$, ${ }M_{4}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{4}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{1}^{2}$, ${ }M_{4}\phi_{1}^{3}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{1}M_{2}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}^{6}$, ${ }M_{2}M_{4}$, ${ }M_{1}M_{3}$, ${ }M_{3}\phi_{1}^{3}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$ | ${}$ | -8 | 5*t^2.72 + 5*t^4.19 + 4*t^5.09 + 15*t^5.43 + 4*t^5.83 - 8*t^6. + 4*t^6.74 + 18*t^6.91 + 4*t^7.64 + 14*t^7.81 + 35*t^8.15 + 10*t^8.38 + 4*t^8.55 - 35*t^8.72 + t^8.72/y^2 - t^3.91/y - t^4.81/y - (5*t^6.62)/y - (5*t^7.53)/y + (10*t^8.43)/y - t^3.91*y - t^4.81*y - 5*t^6.62*y - 5*t^7.53*y + 10*t^8.43*y + t^8.72*y^2 | t^2.72/(g1*g2) + t^2.72/(g1*g3) + (g1*g2*t^2.72)/g4^6 + (g1*g3*t^2.72)/g4^6 + t^2.72/g4^3 + (g1*g2*t^4.19)/g4 + (g1*g3*t^4.19)/g4 + g4^2*t^4.19 + (g4^5*t^4.19)/(g1*g2) + (g4^5*t^4.19)/(g1*g3) + (g1*g2*t^5.09)/g4^2 + (g1*g3*t^5.09)/g4^2 + (g4^4*t^5.09)/(g1*g2) + (g4^4*t^5.09)/(g1*g3) + t^5.43/(g1^2*g2^2) + t^5.43/(g1^2*g3^2) + t^5.43/(g1^2*g2*g3) + (g1^2*g2^2*t^5.43)/g4^12 + (g1^2*g2*g3*t^5.43)/g4^12 + (g1^2*g3^2*t^5.43)/g4^12 + (g1*g2*t^5.43)/g4^9 + (g1*g3*t^5.43)/g4^9 + (3*t^5.43)/g4^6 + (g2*t^5.43)/(g3*g4^6) + (g3*t^5.43)/(g2*g4^6) + t^5.43/(g1*g2*g4^3) + t^5.43/(g1*g3*g4^3) + (g2^2*g3*t^5.83)/g4 + (g2*g3^2*t^5.83)/g4 + (g1*g4^5*t^5.83)/(g2*g3) + (g4^11*t^5.83)/(g1*g2^2*g3^2) - 4*t^6. - (g2*t^6.)/g3 - (g3*t^6.)/g2 - (g1^2*g2*g3*t^6.)/g4^6 - (g4^6*t^6.)/(g1^2*g2*g3) + (g2^2*g3*t^6.74)/g4^2 + (g2*g3^2*t^6.74)/g4^2 + (g1*g4^4*t^6.74)/(g2*g3) + (g4^10*t^6.74)/(g1*g2^2*g3^2) + (g1^2*g2^2*t^6.91)/g4^7 + (g1^2*g2*g3*t^6.91)/g4^7 + (g1^2*g3^2*t^6.91)/g4^7 + (2*g1*g2*t^6.91)/g4^4 + (2*g1*g3*t^6.91)/g4^4 + (2*t^6.91)/g4 + (g2*t^6.91)/(g3*g4) + (g3*t^6.91)/(g2*g4) + (2*g4^2*t^6.91)/(g1*g2) + (2*g4^2*t^6.91)/(g1*g3) + (g4^5*t^6.91)/(g1^2*g2^2) + (g4^5*t^6.91)/(g1^2*g3^2) + (g4^5*t^6.91)/(g1^2*g2*g3) - (g2*g3*t^7.64)/g1 - (g1*g2^2*g3^2*t^7.64)/g4^6 + (g1^3*t^7.64)/g4^3 + (g2^3*t^7.64)/g4^3 + (g2^2*g3*t^7.64)/g4^3 + (g2*g3^2*t^7.64)/g4^3 + (g3^3*t^7.64)/g4^3 + (g1*g4^3*t^7.64)/(g2*g3) - (g4^6*t^7.64)/(g2*g3^2) - (g4^6*t^7.64)/(g2^2*g3) + (g4^9*t^7.64)/(g1*g2^2*g3^2) + (g4^15*t^7.64)/(g1^3*g2^3*g3^3) + (g1^2*g2^2*t^7.81)/g4^8 + (g1^2*g2*g3*t^7.81)/g4^8 + (g1^2*g3^2*t^7.81)/g4^8 + (g1*g2*t^7.81)/g4^5 + (g1*g3*t^7.81)/g4^5 + (2*t^7.81)/g4^2 + (g2*t^7.81)/(g3*g4^2) + (g3*t^7.81)/(g2*g4^2) + (g4*t^7.81)/(g1*g2) + (g4*t^7.81)/(g1*g3) + (g4^4*t^7.81)/(g1^2*g2^2) + (g4^4*t^7.81)/(g1^2*g3^2) + (g4^4*t^7.81)/(g1^2*g2*g3) + t^8.15/(g1^3*g2^3) + t^8.15/(g1^3*g3^3) + t^8.15/(g1^3*g2*g3^2) + t^8.15/(g1^3*g2^2*g3) + (g1^3*g2^3*t^8.15)/g4^18 + (g1^3*g2^2*g3*t^8.15)/g4^18 + (g1^3*g2*g3^2*t^8.15)/g4^18 + (g1^3*g3^3*t^8.15)/g4^18 + (g1^2*g2^2*t^8.15)/g4^15 + (g1^2*g2*g3*t^8.15)/g4^15 + (g1^2*g3^2*t^8.15)/g4^15 + (3*g1*g2*t^8.15)/g4^12 + (g1*g2^2*t^8.15)/(g3*g4^12) + (3*g1*g3*t^8.15)/g4^12 + (g1*g3^2*t^8.15)/(g2*g4^12) + (3*t^8.15)/g4^9 + (g2*t^8.15)/(g3*g4^9) + (g3*t^8.15)/(g2*g4^9) + (3*t^8.15)/(g1*g2*g4^6) + (g2*t^8.15)/(g1*g3^2*g4^6) + (3*t^8.15)/(g1*g3*g4^6) + (g3*t^8.15)/(g1*g2^2*g4^6) + t^8.15/(g1^2*g2^2*g4^3) + t^8.15/(g1^2*g3^2*g4^3) + t^8.15/(g1^2*g2*g3*g4^3) + (g1^2*g2^2*t^8.38)/g4^2 + (g1^2*g2*g3*t^8.38)/g4^2 + (g1^2*g3^2*t^8.38)/g4^2 + 2*g4^4*t^8.38 + (g2*g4^4*t^8.38)/g3 + (g3*g4^4*t^8.38)/g2 + (g4^10*t^8.38)/(g1^2*g2^2) + (g4^10*t^8.38)/(g1^2*g3^2) + (g4^10*t^8.38)/(g1^2*g2*g3) + (g2^2*g3*t^8.55)/g4^4 + (g2*g3^2*t^8.55)/g4^4 + (g1*g4^2*t^8.55)/(g2*g3) + (g4^8*t^8.55)/(g1*g2^2*g3^2) - (5*t^8.72)/(g1*g2) - (g2*t^8.72)/(g1*g3^2) - (5*t^8.72)/(g1*g3) - (g3*t^8.72)/(g1*g2^2) - (g1^3*g2^2*g3*t^8.72)/g4^12 - (g1^3*g2*g3^2*t^8.72)/g4^12 - (g1^2*g2*g3*t^8.72)/g4^9 - (5*g1*g2*t^8.72)/g4^6 - (g1*g2^2*t^8.72)/(g3*g4^6) - (5*g1*g3*t^8.72)/g4^6 - (g1*g3^2*t^8.72)/(g2*g4^6) - (3*t^8.72)/g4^3 - (g2*t^8.72)/(g3*g4^3) - (g3*t^8.72)/(g2*g4^3) - (g4^3*t^8.72)/(g1^2*g2*g3) - (g4^6*t^8.72)/(g1^3*g2*g3^2) - (g4^6*t^8.72)/(g1^3*g2^2*g3) + t^8.72/(g4^3*y^2) - t^3.91/(g4*y) - t^4.81/(g4^2*y) - (g1*g2*t^6.62)/(g4^7*y) - (g1*g3*t^6.62)/(g4^7*y) - t^6.62/(g4^4*y) - t^6.62/(g1*g2*g4*y) - t^6.62/(g1*g3*g4*y) - (g1*g2*t^7.53)/(g4^8*y) - (g1*g3*t^7.53)/(g4^8*y) - t^7.53/(g4^5*y) - t^7.53/(g1*g2*g4^2*y) - t^7.53/(g1*g3*g4^2*y) + t^8.43/(g1^2*g2*g3*y) + (g1^2*g2*g3*t^8.43)/(g4^12*y) + (g1*g2*t^8.43)/(g4^9*y) + (g1*g3*t^8.43)/(g4^9*y) + (2*t^8.43)/(g4^6*y) + (g2*t^8.43)/(g3*g4^6*y) + (g3*t^8.43)/(g2*g4^6*y) + t^8.43/(g1*g2*g4^3*y) + t^8.43/(g1*g3*g4^3*y) - (t^3.91*y)/g4 - (t^4.81*y)/g4^2 - (g1*g2*t^6.62*y)/g4^7 - (g1*g3*t^6.62*y)/g4^7 - (t^6.62*y)/g4^4 - (t^6.62*y)/(g1*g2*g4) - (t^6.62*y)/(g1*g3*g4) - (g1*g2*t^7.53*y)/g4^8 - (g1*g3*t^7.53*y)/g4^8 - (t^7.53*y)/g4^5 - (t^7.53*y)/(g1*g2*g4^2) - (t^7.53*y)/(g1*g3*g4^2) + (t^8.43*y)/(g1^2*g2*g3) + (g1^2*g2*g3*t^8.43*y)/g4^12 + (g1*g2*t^8.43*y)/g4^9 + (g1*g3*t^8.43*y)/g4^9 + (2*t^8.43*y)/g4^6 + (g2*t^8.43*y)/(g3*g4^6) + (g3*t^8.43*y)/(g2*g4^6) + (t^8.43*y)/(g1*g2*g4^3) + (t^8.43*y)/(g1*g3*g4^3) + (t^8.72*y^2)/g4^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57315 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}q_{2}\tilde{q}_{1}$ | 1.463 | 1.6484 | 0.8875 | [X:[1.379], M:[0.9315, 0.9315, 0.8956], q:[0.5163, 0.5522], qb:[0.5522, 0.5163], phi:[0.3105]] | t^2.687 + 3*t^2.794 + t^3.098 + t^4.029 + 3*t^4.137 + t^4.245 + t^4.961 + 2*t^5.069 + t^5.176 + t^5.374 + 3*t^5.481 + 6*t^5.589 + 2*t^5.686 + t^5.785 + 2*t^5.794 + t^5.892 - 4*t^6. - t^3.931/y - t^4.863/y - t^3.931*y - t^4.863*y | detail |