Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
58021 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ + ${ }M_{4}q_{2}\tilde{q}_{1}$ | 1.4578 | 1.6423 | 0.8876 | [X:[1.3613], M:[0.958, 0.958, 1.042, 0.9215], q:[0.5027, 0.5393], qb:[0.5393, 0.5027], phi:[0.3193]] | [X:[[0, 0, 0, 2]], M:[[1, 0, 1, -6], [-1, 0, -1, 0], [0, 0, 0, 3], [-1, -1, 0, 0]], q:[[-1, -1, -1, 6], [1, 0, 0, 0]], qb:[[0, 1, 0, 0], [0, 0, 1, 0]], phi:[[0, 0, 0, -1]]] | 4 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{4}$, ${ }M_{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{4}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{2}M_{4}$, ${ }M_{1}M_{4}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{4}q_{1}\tilde{q}_{2}$, ${ }M_{3}M_{4}$ | ${}M_{1}M_{3}$, ${ }M_{2}M_{3}$ | -2 | t^2.76 + 2*t^2.87 + t^3.02 + t^3.13 + t^3.97 + 3*t^4.08 + t^4.19 + t^4.93 + 2*t^5.04 + t^5.15 + t^5.53 + 2*t^5.59 + 2*t^5.64 + 2*t^5.7 + 3*t^5.75 + t^5.78 + t^5.89 - 2*t^6. + t^6.03 - 2*t^6.11 + t^6.14 + t^6.25 + 2*t^6.55 + 2*t^6.66 + t^6.74 + 3*t^6.85 + 4*t^6.96 + t^6.99 + 4*t^7.1 + 4*t^7.21 + t^7.32 + 2*t^7.4 + t^7.7 + 2*t^7.73 + 2*t^7.81 + 3*t^7.92 + 2*t^7.95 + 5*t^8.06 + 7*t^8.17 + 3*t^8.28 + t^8.29 + t^8.39 + 2*t^8.4 + 3*t^8.51 + t^8.55 - 2*t^8.58 + 2*t^8.61 + 4*t^8.62 + t^8.65 - 2*t^8.69 + 4*t^8.72 - 2*t^8.76 + t^8.8 + 2*t^8.83 - 4*t^8.87 + 2*t^8.91 - 3*t^8.98 + t^8.87/y^2 - t^3.96/y - t^4.92/y - t^6.72/y - (2*t^6.83)/y - t^6.97/y - t^7.08/y - t^7.68/y - (2*t^7.79)/y - t^7.93/y - t^8.04/y + (2*t^8.64)/y + t^8.75/y + t^8.78/y + (2*t^8.89)/y - t^3.96*y - t^4.92*y - t^6.72*y - 2*t^6.83*y - t^6.97*y - t^7.08*y - t^7.68*y - 2*t^7.79*y - t^7.93*y - t^8.04*y + 2*t^8.64*y + t^8.75*y + t^8.78*y + 2*t^8.89*y + t^8.87*y^2 | t^2.76/(g1*g2) + t^2.87/(g1*g3) + (g1*g3*t^2.87)/g4^6 + (g4^6*t^3.02)/(g1*g2) + g4^3*t^3.13 + (g4^5*t^3.97)/(g1*g2) + (g1*g3*t^4.08)/g4 + g4^2*t^4.08 + (g4^5*t^4.08)/(g1*g3) + (g1*g2*t^4.19)/g4 + (g4^4*t^4.93)/(g1*g2) + (g1*g3*t^5.04)/g4^2 + (g4^4*t^5.04)/(g1*g3) + (g1*g2*t^5.15)/g4^2 + t^5.53/(g1^2*g2^2) + (g2*g3^2*t^5.59)/g4 + (g4^11*t^5.59)/(g1*g2^2*g3^2) + t^5.64/(g1^2*g2*g3) + (g3*t^5.64)/(g2*g4^6) + (g2^2*g3*t^5.7)/g4 + (g1*g4^5*t^5.7)/(g2*g3) + t^5.75/(g1^2*g3^2) + (g1^2*g3^2*t^5.75)/g4^12 + t^5.75/g4^6 + (g4^6*t^5.78)/(g1^2*g2^2) + (g4^3*t^5.89)/(g1*g2) - 4*t^6. + (g1*g3*t^6.)/g4^3 + (g4^3*t^6.)/(g1*g3) + (g4^12*t^6.03)/(g1^2*g2^2) - (g2*t^6.11)/g3 - (g1^2*g2*g3*t^6.11)/g4^6 + (g4^9*t^6.14)/(g1*g2) + g4^6*t^6.25 + (g2*g3^2*t^6.55)/g4^2 + (g4^10*t^6.55)/(g1*g2^2*g3^2) + (g2^2*g3*t^6.66)/g4^2 + (g1*g4^4*t^6.66)/(g2*g3) + (g4^5*t^6.74)/(g1^2*g2^2) + (g3*t^6.85)/(g2*g4) + (g4^2*t^6.85)/(g1*g2) + (g4^5*t^6.85)/(g1^2*g2*g3) + (g1^2*g3^2*t^6.96)/g4^7 + (g1*g3*t^6.96)/g4^4 + (g4^2*t^6.96)/(g1*g3) + (g4^5*t^6.96)/(g1^2*g3^2) + (g4^11*t^6.99)/(g1^2*g2^2) + (g3*g4^5*t^7.1)/g2 + (2*g4^8*t^7.1)/(g1*g2) + (g4^11*t^7.1)/(g1^2*g2*g3) + g1*g3*g4^2*t^7.21 + 2*g4^5*t^7.21 + (g4^8*t^7.21)/(g1*g3) + g1*g2*g4^2*t^7.32 + (g3^3*t^7.4)/g4^3 + (g4^15*t^7.4)/(g1^3*g2^3*g3^3) - (g2*g3*t^7.51)/g1 + (g2*g3^2*t^7.51)/g4^3 - (g4^6*t^7.51)/(g2^2*g3) + (g4^9*t^7.51)/(g1*g2^2*g3^2) - (g1*g2^2*g3^2*t^7.62)/g4^6 + (g2^2*g3*t^7.62)/g4^3 + (g1*g4^3*t^7.62)/(g2*g3) - (g4^6*t^7.62)/(g2*g3^2) + (g4^4*t^7.7)/(g1^2*g2^2) + (g1^3*t^7.73)/g4^3 + (g2^3*t^7.73)/g4^3 + (g3*t^7.81)/(g2*g4^2) + (g4^4*t^7.81)/(g1^2*g2*g3) + (g1^2*g3^2*t^7.92)/g4^8 + t^7.92/g4^2 + (g4^4*t^7.92)/(g1^2*g3^2) + (2*g4^10*t^7.95)/(g1^2*g2^2) + (2*g3*g4^4*t^8.06)/g2 + (g4^7*t^8.06)/(g1*g2) + (2*g4^10*t^8.06)/(g1^2*g2*g3) + (g1^2*g3^2*t^8.17)/g4^2 + g1*g3*g4*t^8.17 + 3*g4^4*t^8.17 + (g4^7*t^8.17)/(g1*g3) + (g4^10*t^8.17)/(g1^2*g3^2) + (g1^2*g2*g3*t^8.28)/g4^2 + g1*g2*g4*t^8.28 + (g2*g4^4*t^8.28)/g3 + t^8.29/(g1^3*g2^3) + (g1^2*g2^2*t^8.39)/g4^2 + t^8.4/(g1^3*g2^2*g3) + (g3*t^8.4)/(g1*g2^2*g4^6) + t^8.51/(g1^3*g2*g3^2) + (g1*g3^2*t^8.51)/(g2*g4^12) + t^8.51/(g1*g2*g4^6) + (g4^6*t^8.55)/(g1^3*g2^3) - (g1*g2^2*g3^2*t^8.58)/g4^7 - (g4^5*t^8.58)/(g2*g3^2) + (g3^2*g4^5*t^8.61)/g1 + (g4^17*t^8.61)/(g1^2*g2^3*g3^2) + t^8.62/(g1^3*g3^3) + (g1^3*g3^3*t^8.62)/g4^18 + (g1*g3*t^8.62)/g4^12 + t^8.62/(g1*g3*g4^6) + (g4^3*t^8.65)/(g1^2*g2^2) - (g1*g2^3*g3*t^8.69)/g4^7 - (g1^2*t^8.69)/(g3*g4) + g2*g3^2*g4^2*t^8.72 + (g2*g3*g4^5*t^8.72)/g1 + (g4^11*t^8.72)/(g2^2*g3) + (g4^14*t^8.72)/(g1*g2^2*g3^2) - (4*t^8.76)/(g1*g2) + (g3*t^8.76)/(g2*g4^3) + (g4^3*t^8.76)/(g1^2*g2*g3) + (g4^12*t^8.8)/(g1^3*g2^3) + g2^2*g3*g4^2*t^8.83 + (g1*g4^8*t^8.83)/(g2*g3) - (4*t^8.87)/(g1*g3) + (g1^2*g3^2*t^8.87)/g4^9 - (4*g1*g3*t^8.87)/g4^6 + (2*t^8.87)/g4^3 + (g4^3*t^8.87)/(g1^2*g3^2) + (2*g4^9*t^8.91)/(g1^2*g2^2) - (g2*t^8.98)/(g1*g3^2) - (g1^3*g2*g3^2*t^8.98)/g4^12 - (g1*g2*t^8.98)/g4^6 + t^8.87/(g4^3*y^2) - t^3.96/(g4*y) - t^4.92/(g4^2*y) - t^6.72/(g1*g2*g4*y) - (g1*g3*t^6.83)/(g4^7*y) - t^6.83/(g1*g3*g4*y) - (g4^5*t^6.97)/(g1*g2*y) - (g4^2*t^7.08)/y - t^7.68/(g1*g2*g4^2*y) - (g1*g3*t^7.79)/(g4^8*y) - t^7.79/(g1*g3*g4^2*y) - (g4^4*t^7.93)/(g1*g2*y) - (g4*t^8.04)/y + t^8.64/(g1^2*g2*g3*y) + (g3*t^8.64)/(g2*g4^6*y) + t^8.75/(g4^6*y) + (g4^6*t^8.78)/(g1^2*g2^2*y) + (g3*t^8.89)/(g2*y) + (g4^6*t^8.89)/(g1^2*g2*g3*y) - (t^3.96*y)/g4 - (t^4.92*y)/g4^2 - (t^6.72*y)/(g1*g2*g4) - (g1*g3*t^6.83*y)/g4^7 - (t^6.83*y)/(g1*g3*g4) - (g4^5*t^6.97*y)/(g1*g2) - g4^2*t^7.08*y - (t^7.68*y)/(g1*g2*g4^2) - (g1*g3*t^7.79*y)/g4^8 - (t^7.79*y)/(g1*g3*g4^2) - (g4^4*t^7.93*y)/(g1*g2) - g4*t^8.04*y + (t^8.64*y)/(g1^2*g2*g3) + (g3*t^8.64*y)/(g2*g4^6) + (t^8.75*y)/g4^6 + (g4^6*t^8.78*y)/(g1^2*g2^2) + (g3*t^8.89*y)/g2 + (g4^6*t^8.89*y)/(g1^2*g2*g3) + (t^8.87*y^2)/g4^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57314 | SU3adj1nf2 | ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ | 1.4535 | 1.6383 | 0.8872 | [X:[1.3429], M:[0.9857, 0.9857, 1.0143], q:[0.5072, 0.5072], qb:[0.5072, 0.5072], phi:[0.3286]] | 2*t^2.957 + 3*t^3.043 + 5*t^4.029 + 4*t^5.014 + 4*t^5.55 + 3*t^5.914 - 2*t^6. - t^3.986/y - t^4.971/y - t^3.986*y - t^4.971*y | detail |