Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57992 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }M_{2}X_{1}$ | 1.426 | 1.659 | 0.8596 | [X:[1.2727], M:[0.9091, 0.7273], q:[0.3636, 0.5455], qb:[0.3636, 0.5455], phi:[0.3636]] | [X:[[0, 0]], M:[[0, 0], [0, 0]], q:[[-1, 0], [0, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] | 2 | {a: 30369/21296, c: 17665/10648, X1: 14/11, M1: 10/11, M2: 8/11, q1: 4/11, q2: 6/11, qb1: 4/11, qb2: 6/11, phi1: 4/11} |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ | ${}\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$ | 8 | 2*t^2.18 + 3*t^2.73 + 2*t^3.27 + 2*t^3.82 + 5*t^4.36 + 10*t^4.91 + 11*t^5.45 + 8*t^6. + 17*t^6.55 + 23*t^7.09 + 30*t^7.64 + 31*t^8.18 + 32*t^8.73 - t^4.09/y - t^5.18/y - (2*t^6.27)/y - (3*t^6.82)/y - (2*t^7.36)/y + (4*t^7.91)/y + (2*t^8.45)/y - t^4.09*y - t^5.18*y - 2*t^6.27*y - 3*t^6.82*y - 2*t^7.36*y + 4*t^7.91*y + 2*t^8.45*y | 2*t^2.18 + t^2.73 + (g1*t^2.73)/g2 + (g2*t^2.73)/g1 + 2*t^3.27 + (g1*t^3.82)/g2 + (g2*t^3.82)/g1 + 5*t^4.36 + 2*t^4.91 + t^4.91/(g1^2*g2) + (3*g1*t^4.91)/g2 + (3*g2*t^4.91)/g1 + g1^2*g2*t^4.91 + 7*t^5.45 + t^5.45/(g1*g2^2) + (g1^2*t^5.45)/g2^2 + (g2^2*t^5.45)/g1^2 + g1*g2^2*t^5.45 - 2*t^6. + t^6./(g1^2*g2) + (4*g1*t^6.)/g2 + (4*g2*t^6.)/g1 + g1^2*g2*t^6. + 13*t^6.55 + t^6.55/g1^3 + g1^3*t^6.55 + t^6.55/(g1*g2^2) + (g1^2*t^6.55)/g2^2 - (g1*t^6.55)/g2 - (g2*t^6.55)/g1 + (g2^2*t^6.55)/g1^2 + g1*g2^2*t^6.55 + t^7.09 - t^7.09/(g1*g2^2) + (3*t^7.09)/(g1^2*g2) + (9*g1*t^7.09)/g2 + (9*g2*t^7.09)/g1 + 3*g1^2*g2*t^7.09 - g1*g2^2*t^7.09 + 18*t^7.64 + t^7.64/g1^3 + g1^3*t^7.64 + (4*t^7.64)/(g1*g2^2) + (4*g1^2*t^7.64)/g2^2 - t^7.64/(g1^2*g2) - (2*g1*t^7.64)/g2 - (2*g2*t^7.64)/g1 - g1^2*g2*t^7.64 + (4*g2^2*t^7.64)/g1^2 + 4*g1*g2^2*t^7.64 - 7*t^8.18 - t^8.18/g1^3 - g1^3*t^8.18 + (2*t^8.18)/g2^3 + (g1^3*t^8.18)/g2^3 - t^8.18/(g1*g2^2) + (5*t^8.18)/(g1^2*g2) + (13*g1*t^8.18)/g2 + (13*g2*t^8.18)/g1 + 5*g1^2*g2*t^8.18 - g1*g2^2*t^8.18 + 2*g2^3*t^8.18 + (g2^3*t^8.18)/g1^3 + 28*t^8.73 + (4*t^8.73)/g1^3 + 4*g1^3*t^8.73 - t^8.73/g2^3 + (5*t^8.73)/(g1*g2^2) + (5*g1^2*t^8.73)/g2^2 - (3*t^8.73)/(g1^2*g2) - (8*g1*t^8.73)/g2 - (8*g2*t^8.73)/g1 - 3*g1^2*g2*t^8.73 + (5*g2^2*t^8.73)/g1^2 + 5*g1*g2^2*t^8.73 - g2^3*t^8.73 - t^4.09/y - t^5.18/y - (2*t^6.27)/y - t^6.82/y - (g1*t^6.82)/(g2*y) - (g2*t^6.82)/(g1*y) - (2*t^7.36)/y + (2*t^7.91)/y + (g1*t^7.91)/(g2*y) + (g2*t^7.91)/(g1*y) + (g1*t^8.45)/(g2*y) + (g2*t^8.45)/(g1*y) - t^4.09*y - t^5.18*y - 2*t^6.27*y - t^6.82*y - (g1*t^6.82*y)/g2 - (g2*t^6.82*y)/g1 - 2*t^7.36*y + 2*t^7.91*y + (g1*t^7.91*y)/g2 + (g2*t^7.91*y)/g1 + (g1*t^8.45*y)/g2 + (g2*t^8.45*y)/g1 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57298 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}^{3}$ | 1.4062 | 1.6221 | 0.8669 | [X:[1.2727], M:[0.9091], q:[0.3636, 0.5455], qb:[0.3636, 0.5455], phi:[0.3636]] | t^2.182 + 3*t^2.727 + 2*t^3.273 + 3*t^3.818 + 3*t^4.364 + 7*t^4.909 + 9*t^5.455 + 7*t^6. - t^4.091/y - t^5.182/y - t^4.091*y - t^5.182*y | detail | {a: 14973/10648, c: 2159/1331, X1: 14/11, M1: 10/11, q1: 4/11, q2: 6/11, qb1: 4/11, qb2: 6/11, phi1: 4/11} |