Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57986 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }\phi_{1}q_{1}^{2}q_{2}$ 1.3273 1.5432 0.8601 [X:[1.2727], M:[0.9091], q:[0.4983, 0.6397], qb:[0.229, 0.4512], phi:[0.3636]] [X:[[0]], M:[[0]], q:[[1], [-2]], qb:[[-1], [2]], phi:[[0]]] 1 {a: 14133/10648, c: 2054/1331, X1: 14/11, M1: 10/11, q1: 148/297, q2: 190/297, qb1: 68/297, qb2: 134/297, phi1: 4/11}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{1}^{3}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$ ${}\phi_{1}^{3}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}^{3}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}X_{1}$ 2 t^2.18 + t^2.61 + t^2.73 + t^2.85 + 2*t^3.27 + t^3.7 + 2*t^3.82 + t^3.94 + 3*t^4.36 + t^4.48 + 2*t^4.79 + 2*t^4.91 + 2*t^5.03 + t^5.21 + t^5.33 + 5*t^5.45 + t^5.58 + t^5.7 + 3*t^5.88 + 2*t^6. + 2*t^6.12 + t^6.3 + 2*t^6.42 + 8*t^6.55 + 3*t^6.67 + t^6.79 + 5*t^6.97 + 6*t^7.09 + 5*t^7.21 + 2*t^7.33 + 3*t^7.39 + 3*t^7.52 + 11*t^7.64 + 4*t^7.76 + t^7.82 + 2*t^7.88 + t^7.94 + 7*t^8.06 + 7*t^8.18 + 7*t^8.3 + 2*t^8.42 + 4*t^8.48 + t^8.55 + 3*t^8.61 + 11*t^8.73 + 4*t^8.85 + t^8.91 + 3*t^8.97 - t^4.09/y - t^5.18/y - t^6.27/y - t^6.7/y - t^6.82/y - t^6.94/y - (2*t^7.36)/y + t^8.33/y + t^8.58/y + t^8.88/y - t^4.09*y - t^5.18*y - t^6.27*y - t^6.7*y - t^6.82*y - t^6.94*y - 2*t^7.36*y + t^8.33*y + t^8.58*y + t^8.88*y t^2.18 + t^2.61/g1^3 + t^2.73 + g1^3*t^2.85 + 2*t^3.27 + t^3.7/g1^3 + 2*t^3.82 + g1^3*t^3.94 + 3*t^4.36 + g1^3*t^4.48 + (2*t^4.79)/g1^3 + 2*t^4.91 + 2*g1^3*t^5.03 + t^5.21/g1^6 + t^5.33/g1^3 + 5*t^5.45 + g1^3*t^5.58 + g1^6*t^5.7 + (3*t^5.88)/g1^3 + 2*t^6. + 2*g1^3*t^6.12 + t^6.3/g1^6 + (2*t^6.42)/g1^3 + 8*t^6.55 + 3*g1^3*t^6.67 + g1^6*t^6.79 + (5*t^6.97)/g1^3 + 6*t^7.09 + 5*g1^3*t^7.21 + 2*g1^6*t^7.33 + (3*t^7.39)/g1^6 + (3*t^7.52)/g1^3 + 11*t^7.64 + 4*g1^3*t^7.76 + t^7.82/g1^9 + 2*g1^6*t^7.88 + t^7.94/g1^6 + (7*t^8.06)/g1^3 + 7*t^8.18 + 7*g1^3*t^8.3 + 2*g1^6*t^8.42 + (4*t^8.48)/g1^6 + g1^9*t^8.55 + (3*t^8.61)/g1^3 + 11*t^8.73 + 4*g1^3*t^8.85 + t^8.91/g1^9 + 3*g1^6*t^8.97 - t^4.09/y - t^5.18/y - t^6.27/y - t^6.7/(g1^3*y) - t^6.82/y - (g1^3*t^6.94)/y - (2*t^7.36)/y + t^8.33/(g1^3*y) + (g1^3*t^8.58)/y + t^8.88/(g1^3*y) - t^4.09*y - t^5.18*y - t^6.27*y - (t^6.7*y)/g1^3 - t^6.82*y - g1^3*t^6.94*y - 2*t^7.36*y + (t^8.33*y)/g1^3 + g1^3*t^8.58*y + (t^8.88*y)/g1^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57298 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}^{3}$ 1.4062 1.6221 0.8669 [X:[1.2727], M:[0.9091], q:[0.3636, 0.5455], qb:[0.3636, 0.5455], phi:[0.3636]] t^2.182 + 3*t^2.727 + 2*t^3.273 + 3*t^3.818 + 3*t^4.364 + 7*t^4.909 + 9*t^5.455 + 7*t^6. - t^4.091/y - t^5.182/y - t^4.091*y - t^5.182*y detail {a: 14973/10648, c: 2159/1331, X1: 14/11, M1: 10/11, q1: 4/11, q2: 6/11, qb1: 4/11, qb2: 6/11, phi1: 4/11}