Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57968 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$ | 1.4256 | 1.608 | 0.8866 | [X:[1.3731], M:[0.7837, 1.0596], q:[0.4358, 0.6301], qb:[0.4671, 0.5862], phi:[0.3135]] | [X:[[0, 4]], M:[[0, -5], [0, 6]], q:[[-1, 19], [-1, 5]], qb:[[1, -12], [1, 0]], phi:[[0, -2]]] | 2 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$ | ${}$ | -2 | t^2.35 + t^2.71 + t^3.07 + t^3.18 + t^3.29 + t^3.65 + t^4.01 + t^4.12 + t^4.23 + 2*t^4.59 + t^4.7 + t^4.95 + t^5.06 + t^5.17 + t^5.42 + t^5.45 + t^5.5 + 2*t^5.53 + t^5.77 + t^5.86 + t^5.89 - 2*t^6. + t^6.03 + t^6.13 + t^6.24 + 2*t^6.36 + t^6.39 + t^6.44 + 2*t^6.47 + 2*t^6.71 + t^6.74 + t^6.8 + 2*t^6.83 + t^6.94 + t^6.97 + t^7.02 + t^7.05 + t^7.07 + 2*t^7.19 - t^7.27 + 5*t^7.3 + t^7.33 + t^7.38 + 3*t^7.41 - t^7.44 + 4*t^7.66 + t^7.74 + 3*t^7.77 - t^7.8 - t^7.85 + 4*t^7.88 + t^7.91 + 2*t^8.01 + t^8.1 + 2*t^8.13 + 6*t^8.24 - t^8.35 - t^8.38 - t^8.44 + t^8.46 + t^8.48 + t^8.49 + t^8.51 + t^8.57 + 5*t^8.6 + t^8.62 + t^8.68 - t^8.71 - t^8.79 + 6*t^8.82 + t^8.84 + t^8.93 + 2*t^8.95 - t^8.96 + t^8.82/y^2 - t^3.94/y - t^4.88/y - t^6.29/y - t^6.65/y - t^7.01/y - t^7.12/y - (2*t^7.23)/y - t^7.59/y - t^7.95/y - t^8.17/y + t^8.42/y + t^8.77/y - t^3.94*y - t^4.88*y - t^6.29*y - t^6.65*y - t^7.01*y - t^7.12*y - 2*t^7.23*y - t^7.59*y - t^7.95*y - t^8.17*y + t^8.42*y + t^8.77*y + t^8.82*y^2 | t^2.35/g2^5 + g2^7*t^2.71 + g2^19*t^3.07 + g2^6*t^3.18 + t^3.29/g2^7 + g2^5*t^3.65 + g2^17*t^4.01 + g2^4*t^4.12 + t^4.23/g2^9 + 2*g2^3*t^4.59 + t^4.7/g2^10 + g2^15*t^4.95 + g2^2*t^5.06 + t^5.17/g2^11 + g2^14*t^5.42 + (g2^41*t^5.45)/g1^3 + (g1^3*t^5.5)/g2^26 + 2*g2*t^5.53 + g2^26*t^5.77 + (g1^3*t^5.86)/g2^14 + g2^13*t^5.89 - 2*t^6. + (g2^27*t^6.03)/g1^3 + g2^38*t^6.13 + g2^25*t^6.24 + 2*g2^12*t^6.36 + (g2^39*t^6.39)/g1^3 + (g1^3*t^6.44)/g2^28 + (2*t^6.47)/g2 + 2*g2^24*t^6.71 + (g2^51*t^6.74)/g1^3 + (g1^3*t^6.8)/g2^16 + 2*g2^11*t^6.83 + t^6.94/g2^2 + (g2^25*t^6.97)/g1^3 + (g1^3*t^7.02)/g2^42 + t^7.05/g2^15 + g2^36*t^7.07 + 2*g2^23*t^7.19 - (g1^3*t^7.27)/g2^17 + 5*g2^10*t^7.3 + (g2^37*t^7.33)/g1^3 + (g1^3*t^7.38)/g2^30 + (3*t^7.41)/g2^3 - (g2^24*t^7.44)/g1^3 + 4*g2^22*t^7.66 + (g1^3*t^7.74)/g2^18 + 3*g2^9*t^7.77 - (g2^36*t^7.8)/g1^3 - (g1^3*t^7.85)/g2^31 + (4*t^7.88)/g2^4 + (g2^23*t^7.91)/g1^3 + 2*g2^34*t^8.01 + (g1^3*t^8.1)/g2^6 + 2*g2^21*t^8.13 + 6*g2^8*t^8.24 - t^8.35/g2^5 - (g2^22*t^8.38)/g1^3 - (g1^3*t^8.44)/g2^45 + t^8.46/g2^18 + g2^33*t^8.48 + (g2^9*t^8.49)/g1^3 + (g2^60*t^8.51)/g1^3 + (g1^3*t^8.57)/g2^7 + 5*g2^20*t^8.6 + (g2^47*t^8.62)/g1^3 + (g1^3*t^8.68)/g2^20 - g2^7*t^8.71 - (g1^3*t^8.79)/g2^33 + (6*t^8.82)/g2^6 + g2^45*t^8.84 + g1^3*g2^5*t^8.93 + 2*g2^32*t^8.95 - (g2^8*t^8.96)/g1^3 + t^8.82/(g2^6*y^2) - t^3.94/(g2^2*y) - t^4.88/(g2^4*y) - t^6.29/(g2^7*y) - (g2^5*t^6.65)/y - (g2^17*t^7.01)/y - (g2^4*t^7.12)/y - (2*t^7.23)/(g2^9*y) - (g2^3*t^7.59)/y - (g2^15*t^7.95)/y - t^8.17/(g2^11*y) + (g2^14*t^8.42)/y + (g2^26*t^8.77)/y - (t^3.94*y)/g2^2 - (t^4.88*y)/g2^4 - (t^6.29*y)/g2^7 - g2^5*t^6.65*y - g2^17*t^7.01*y - g2^4*t^7.12*y - (2*t^7.23*y)/g2^9 - g2^3*t^7.59*y - g2^15*t^7.95*y - (t^8.17*y)/g2^11 + g2^14*t^8.42*y + g2^26*t^8.77*y + (t^8.82*y^2)/g2^6 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57305 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ | 1.4324 | 1.6286 | 0.8795 | [X:[1.3376], M:[0.828, 1.0064], q:[0.4204, 0.586], qb:[0.4204, 0.586], phi:[0.3312]] | t^2.484 + t^2.522 + 3*t^3.019 + t^3.516 + 3*t^4.013 + 2*t^4.51 + t^4.968 + 3*t^5.006 + t^5.045 + 2*t^5.274 + 2*t^5.503 + 3*t^5.541 + 2*t^5.771 - 3*t^6. - t^3.994/y - t^4.987/y - t^3.994*y - t^4.987*y | detail |