Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57905 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}q_{2}\tilde{q}_{1}$ | 1.4949 | 1.7248 | 0.8667 | [X:[], M:[0.677, 1.3292, 0.67], q:[0.4935, 0.5004], qb:[0.4942, 0.4996], phi:[0.3354]] | [X:[], M:[[-5, -5, 0], [2, 2, 0], [1, -5, 1]], q:[[6, 0, 0], [0, 0, -1]], qb:[[0, 6, 0], [0, 0, 1]], phi:[[-1, -1, 0]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }M_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$ | ${}M_{2}M_{3}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ | 1 | t^2.01 + t^2.03 + t^2.96 + 2*t^2.98 + t^3. + t^3.02 + 2*t^3.99 + t^4.01 + t^4.02 + t^4.04 + t^4.06 + t^4.97 + t^4.98 + 4*t^4.99 + t^5. + 4*t^5.01 + 2*t^5.03 + t^5.05 + 2*t^5.47 + 2*t^5.49 + t^5.93 + t^5.94 + t^5.95 + 3*t^5.96 + t^5.97 + t^5.98 + t^6. + 2*t^6.02 + t^6.03 + 2*t^6.04 + t^6.05 + t^6.07 + t^6.09 + t^6.47 + t^6.48 + 2*t^6.49 + 2*t^6.95 + t^6.96 + 4*t^6.97 + t^6.98 + 3*t^6.99 + 5*t^7. + t^7.01 + 6*t^7.02 + 4*t^7.04 + t^7.05 + 2*t^7.06 + t^7.08 + t^7.46 + t^7.47 + 2*t^7.48 + 4*t^7.5 + 4*t^7.52 + 2*t^7.94 + 3*t^7.95 + 3*t^7.96 + 6*t^7.97 + 6*t^7.98 + 7*t^7.99 + 2*t^8. + 4*t^8.01 + t^8.04 + 3*t^8.05 + t^8.06 + 2*t^8.07 + t^8.08 + t^8.1 + t^8.12 + 2*t^8.43 + 6*t^8.45 + 4*t^8.47 + t^8.89 + 2*t^8.91 + t^8.92 + 3*t^8.93 + 3*t^8.94 + 2*t^8.95 + 2*t^8.97 + t^8.98 + 2*t^8.99 - t^4.01/y - t^5.01/y - t^6.02/y - t^6.04/y - t^6.97/y - (2*t^6.99)/y - t^7.01/y - (2*t^7.02)/y + t^7.97/y + (2*t^7.99)/y + (2*t^8.01)/y - t^8.07/y + t^8.94/y + t^8.95/y + (2*t^8.96)/y + (2*t^8.98)/y - t^4.01*y - t^5.01*y - t^6.02*y - t^6.04*y - t^6.97*y - 2*t^6.99*y - t^7.01*y - 2*t^7.02*y + t^7.97*y + 2*t^7.99*y + 2*t^8.01*y - t^8.07*y + t^8.94*y + t^8.95*y + 2*t^8.96*y + 2*t^8.98*y | (g1*g3*t^2.01)/g2^5 + t^2.03/(g1^5*g2^5) + g1^6*g2^6*t^2.96 + (g2^6*t^2.98)/g3 + g1^6*g3*t^2.98 + t^3. + t^3.02/(g1^3*g2^3) + g1^2*g2^2*t^3.99 + (g1^5*g3*t^3.99)/g2 + t^4.01/(g1*g2) + (g1^2*g3^2*t^4.02)/g2^10 + (g3*t^4.04)/(g1^4*g2^10) + t^4.06/(g1^10*g2^10) + g1^7*g2*g3*t^4.97 + g1^4*g2^4*t^4.98 + 2*g1*g2*t^4.99 + (g1^4*g3*t^4.99)/g2^2 + (g1^7*g3^2*t^4.99)/g2^5 + (g2^4*t^5.)/(g1^2*g3) + t^5.01/(g1^2*g2^2) + (g2*t^5.01)/(g1^5*g3) + (2*g1*g3*t^5.01)/g2^5 + t^5.03/(g1^5*g2^5) + (g3*t^5.03)/(g1^2*g2^8) + t^5.05/(g1^8*g2^8) + (g1^11*t^5.47)/(g2*g3) + (g2^11*g3*t^5.47)/g1 + (g1^5*t^5.49)/(g2*g3^2) + (g2^5*g3^2*t^5.49)/g1 + g1^12*g2^12*t^5.93 + g1^12*g2^6*g3*t^5.94 + (g1^6*g2^12*t^5.95)/g3 + 2*g1^6*g2^6*t^5.96 + g1^12*g3^2*t^5.96 + (g2^12*t^5.97)/g3^2 + g1^3*g2^3*t^5.98 - 3*t^6. + (g2^3*t^6.)/(g1^3*g3) + (2*g1^3*g3*t^6.)/g2^3 + (g1^6*g3^2*t^6.)/g2^6 + (2*t^6.02)/(g1^3*g2^3) - t^6.02/(g1^6*g3) + (g3*t^6.02)/g2^6 + (g1^3*g3^3*t^6.03)/g2^15 + (2*t^6.04)/(g1^6*g2^6) + (g3^2*t^6.05)/(g1^3*g2^15) + (g3*t^6.07)/(g1^9*g2^15) + t^6.09/(g1^15*g2^15) + (g1^10*t^6.47)/(g2^2*g3) + (g2^10*g3*t^6.48)/g1^2 + (g1^4*t^6.49)/(g2^2*g3^2) + (g2^4*g3^2*t^6.49)/g1^2 + g1^8*g2^8*t^6.95 + g1^11*g2^5*g3*t^6.95 + (g1^11*g3^2*t^6.96)/g2 + 2*g1^5*g2^5*t^6.97 + (g1^2*g2^8*t^6.97)/g3 + g1^8*g2^2*g3*t^6.97 + (g1^8*g3^2*t^6.98)/g2^4 + g1^2*g2^2*t^6.99 + (2*g1^5*g3*t^6.99)/g2 + (3*g1^2*g3*t^7.)/g2^4 + (g1^5*g3^2*t^7.)/g2^7 + (g1^8*g3^3*t^7.)/g2^10 + t^7.01/(g1*g2) + (3*t^7.02)/(g1^4*g2^4) + (g3*t^7.02)/(g1*g2^7) + (2*g1^2*g3^2*t^7.02)/g2^10 + t^7.04/(g1^7*g2^7) + (2*g3*t^7.04)/(g1^4*g2^10) + (g3^2*t^7.04)/(g1*g2^13) + t^7.05/(g1^10*g2^4*g3) + t^7.06/(g1^10*g2^10) + (g3*t^7.06)/(g1^7*g2^13) + t^7.08/(g1^13*g2^13) + (g1^15*t^7.46)/g2^3 + (g2^15*t^7.47)/g1^3 + (g1^12*t^7.48)/g2^6 - (g1^6*t^7.48)/g3^2 + (g1^9*t^7.48)/(g2^3*g3) + (g2^9*g3*t^7.48)/g1^3 + (g1^3*t^7.5)/(g2^3*g3^2) + (g1^6*t^7.5)/(g2^6*g3) + (g2^3*g3^2*t^7.5)/g1^3 + g3^3*t^7.5 + t^7.52/(g1^3*g2^3*g3^3) + t^7.52/(g2^6*g3^2) + (g3^2*t^7.52)/g1^6 + (g3^3*t^7.52)/(g1^3*g2^3) + g1^10*g2^10*t^7.94 + g1^13*g2^7*g3*t^7.94 + 2*g1^10*g2^4*g3*t^7.95 + g1^13*g2*g3^2*t^7.95 + g1^7*g2^7*t^7.96 + (2*g1^4*g2^10*t^7.96)/g3 + 3*g1^7*g2*g3*t^7.97 + (2*g1^10*g3^2*t^7.97)/g2^2 + (g1^13*g3^3*t^7.97)/g2^5 + 4*g1^4*g2^4*t^7.98 + (g2^10*t^7.98)/(g1^2*g3^2) + (g1*g2^7*t^7.98)/g3 + 3*g1*g2*t^7.99 + (3*g1^4*g3*t^7.99)/g2^2 + (g1^7*g3^2*t^7.99)/g2^5 + (g2^7*t^8.)/(g1^5*g3^2) + (g2^4*t^8.)/(g1^2*g3) + (2*t^8.01)/(g1^2*g2^2) + (g2*t^8.01)/(g1^5*g3) - (2*g1*g3*t^8.01)/g2^5 + (2*g1^4*g3^2*t^8.01)/g2^8 + (g1^7*g3^3*t^8.01)/g2^11 - (3*t^8.03)/(g1^5*g2^5) + (2*g3*t^8.03)/(g1^2*g2^8) + (g1*g3^2*t^8.03)/g2^11 + (g1^4*g3^4*t^8.04)/g2^20 + (2*t^8.05)/(g1^8*g2^8) - t^8.05/(g1^11*g2^5*g3) + (2*g3*t^8.05)/(g1^5*g2^11) + (g3^3*t^8.06)/(g1^2*g2^20) + (2*t^8.07)/(g1^11*g2^11) + (g3^2*t^8.08)/(g1^8*g2^20) + (g3*t^8.1)/(g1^14*g2^20) + t^8.12/(g1^20*g2^20) + (g1^17*g2^5*t^8.43)/g3 + g1^5*g2^17*g3*t^8.43 + (g1^17*t^8.45)/g2 + (g2^17*t^8.45)/g1 + (2*g1^11*g2^5*t^8.45)/g3^2 + 2*g1^5*g2^11*g3^2*t^8.45 + (g1^5*g2^5*t^8.47)/g3^3 + (g1^11*t^8.47)/(g2*g3) + (g2^11*g3*t^8.47)/g1 + g1^5*g2^5*g3^3*t^8.47 - (g2^11*t^8.49)/g1^7 - (g1^5*t^8.49)/(g2*g3^2) + (g1^8*t^8.49)/(g2^4*g3) + (g2^8*g3*t^8.49)/g1^4 - t^8.51/(g1*g2*g3^3) + (g1^2*t^8.51)/(g2^4*g3^2) - (g2^5*g3*t^8.51)/g1^7 + (g2^2*g3^2*t^8.51)/g1^4 + g1^18*g2^18*t^8.89 + (g1^12*g2^18*t^8.91)/g3 + g1^18*g2^12*g3*t^8.91 + g1^18*g2^6*g3^2*t^8.92 + 2*g1^12*g2^12*t^8.93 + (g1^6*g2^18*t^8.93)/g3^2 + g1^9*g2^9*t^8.94 + g1^12*g2^6*g3*t^8.94 + g1^18*g3^3*t^8.94 + (g2^18*t^8.95)/g3^3 + (g1^6*g2^12*t^8.95)/g3 - 4*g1^6*g2^6*t^8.96 + 3*g1^9*g2^3*g3*t^8.96 + g1^12*g3^2*t^8.96 + (g1^3*g2^9*t^8.97)/g3 + (g1^12*g3^3*t^8.97)/g2^6 + 5*g1^3*g2^3*t^8.98 - (5*g2^6*t^8.98)/g3 - 2*g1^6*g3*t^8.98 + (3*g1^9*g3^2*t^8.98)/g2^3 + (g2^9*t^8.99)/(g1^3*g3^2) + (g1^9*g3^3*t^8.99)/g2^9 - t^4.01/(g1*g2*y) - t^5.01/(g1^2*g2^2*y) - (g3*t^6.02)/(g2^6*y) - t^6.04/(g1^6*g2^6*y) - (g1^5*g2^5*t^6.97)/y - (g2^5*t^6.99)/(g1*g3*y) - (g1^5*g3*t^6.99)/(g2*y) - t^7.01/(g1*g2*y) - t^7.02/(g1^4*g2^4*y) - (g3*t^7.02)/(g1*g2^7*y) - t^7.04/(g1^7*g2^7*y) + (g3*t^7.04)/(g1^4*g2^10*y) + (g1^7*g2*g3*t^7.97)/y + (2*g1*g2*t^7.99)/y - (g1^4*g3*t^7.99)/(g2^2*y) + (g1^7*g3^2*t^7.99)/(g2^5*y) - t^8.01/(g1^2*g2^2*y) + (g2*t^8.01)/(g1^5*g3*y) + (2*g1*g3*t^8.01)/(g2^5*y) + (g3*t^8.03)/(g1^2*g2^8*y) - (g1*g3^2*t^8.03)/(g2^11*y) + t^8.05/(g1^8*g2^8*y) - (g3*t^8.05)/(g1^5*g2^11*y) - t^8.07/(g1^11*g2^11*y) + (g1^12*g2^6*g3*t^8.94)/y + (g1^6*g2^12*t^8.95)/(g3*y) + (2*g1^6*g2^6*t^8.96)/y + (g1^3*g2^3*t^8.98)/y + (g2^6*t^8.98)/(g3*y) - (t^4.01*y)/(g1*g2) - (t^5.01*y)/(g1^2*g2^2) - (g3*t^6.02*y)/g2^6 - (t^6.04*y)/(g1^6*g2^6) - g1^5*g2^5*t^6.97*y - (g2^5*t^6.99*y)/(g1*g3) - (g1^5*g3*t^6.99*y)/g2 - (t^7.01*y)/(g1*g2) - (t^7.02*y)/(g1^4*g2^4) - (g3*t^7.02*y)/(g1*g2^7) - (t^7.04*y)/(g1^7*g2^7) + (g3*t^7.04*y)/(g1^4*g2^10) + g1^7*g2*g3*t^7.97*y + 2*g1*g2*t^7.99*y - (g1^4*g3*t^7.99*y)/g2^2 + (g1^7*g3^2*t^7.99*y)/g2^5 - (t^8.01*y)/(g1^2*g2^2) + (g2*t^8.01*y)/(g1^5*g3) + (2*g1*g3*t^8.01*y)/g2^5 + (g3*t^8.03*y)/(g1^2*g2^8) - (g1*g3^2*t^8.03*y)/g2^11 + (t^8.05*y)/(g1^8*g2^8) - (g3*t^8.05*y)/(g1^5*g2^11) - (t^8.07*y)/(g1^11*g2^11) + g1^12*g2^6*g3*t^8.94*y + (g1^6*g2^12*t^8.95*y)/g3 + 2*g1^6*g2^6*t^8.96*y + g1^3*g2^3*t^8.98*y + (g2^6*t^8.98*y)/g3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57293 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ | 1.4741 | 1.6834 | 0.8757 | [M:[0.6772, 1.3291], q:[0.4937, 0.5], qb:[0.4937, 0.5], phi:[0.3354]] | t^2.032 + t^2.962 + 2*t^2.981 + t^3. + t^3.019 + 3*t^3.987 + t^4.006 + t^4.063 + t^4.975 + 3*t^4.994 + 3*t^5.013 + t^5.032 + t^5.051 + 2*t^5.468 + 2*t^5.487 + t^5.924 + 2*t^5.943 + 4*t^5.962 + t^5.981 - t^6. - t^4.006/y - t^5.013/y - t^4.006*y - t^5.013*y | detail |