Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57904 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ + ${ }M_{3}\phi_{1}^{3}$ | 1.4753 | 1.6876 | 0.8742 | [X:[], M:[0.6983, 1.3207, 0.981], q:[0.481, 0.5], qb:[0.481, 0.5], phi:[0.3397]] | [X:[], M:[[-5, -5, 0], [2, 2, 0], [3, 3, 0]], q:[[6, 0, 0], [0, 0, -1]], qb:[[0, 6, 0], [0, 0, 1]], phi:[[-1, -1, 0]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{3}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{2}$ | ${}$ | -3 | t^2.09 + t^2.89 + 3*t^2.94 + t^3. + 3*t^3.96 + t^4.02 + t^4.19 + t^4.92 + 3*t^4.98 + 4*t^5.04 + t^5.09 + 2*t^5.41 + 2*t^5.46 + t^5.77 + 3*t^5.83 + 7*t^5.89 + t^5.94 - 3*t^6. + t^6.06 + t^6.11 + t^6.28 + 2*t^6.42 + 2*t^6.48 + 3*t^6.85 + 10*t^6.91 + 4*t^6.96 - t^7.02 + t^7.08 + 4*t^7.13 + t^7.19 + 2*t^7.39 + 2*t^7.5 + 4*t^7.56 + t^7.81 + 5*t^7.87 + 14*t^7.92 + 12*t^7.98 + t^8.04 - 5*t^8.09 + t^8.15 + t^8.21 + 2*t^8.29 + 8*t^8.35 + t^8.38 + 6*t^8.41 - 4*t^8.46 - 4*t^8.52 + t^8.66 + 3*t^8.72 + 7*t^8.77 + 11*t^8.83 - t^8.89 - 6*t^8.94 - t^4.02/y - t^5.04/y - t^6.11/y - t^6.91/y - (3*t^6.96)/y - t^7.02/y - t^7.13/y - (2*t^7.98)/y + (2*t^8.04)/y + t^8.09/y - t^8.21/y + (3*t^8.83)/y + (4*t^8.89)/y + (3*t^8.94)/y - t^4.02*y - t^5.04*y - t^6.11*y - t^6.91*y - 3*t^6.96*y - t^7.02*y - t^7.13*y - 2*t^7.98*y + 2*t^8.04*y + t^8.09*y - t^8.21*y + 3*t^8.83*y + 4*t^8.89*y + 3*t^8.94*y | t^2.09/(g1^5*g2^5) + g1^6*g2^6*t^2.89 + g1^3*g2^3*t^2.94 + (g2^6*t^2.94)/g3 + g1^6*g3*t^2.94 + t^3. + g1^2*g2^2*t^3.96 + (g2^5*t^3.96)/(g1*g3) + (g1^5*g3*t^3.96)/g2 + t^4.02/(g1*g2) + t^4.19/(g1^10*g2^10) + g1^4*g2^4*t^4.92 + g1*g2*t^4.98 + (g2^4*t^4.98)/(g1^2*g3) + (g1^4*g3*t^4.98)/g2^2 + (2*t^5.04)/(g1^2*g2^2) + (g2*t^5.04)/(g1^5*g3) + (g1*g3*t^5.04)/g2^5 + t^5.09/(g1^5*g2^5) + (g1^11*t^5.41)/(g2*g3) + (g2^11*g3*t^5.41)/g1 + (g1^5*t^5.46)/(g2*g3^2) + (g2^5*g3^2*t^5.46)/g1 + g1^12*g2^12*t^5.77 + g1^9*g2^9*t^5.83 + (g1^6*g2^12*t^5.83)/g3 + g1^12*g2^6*g3*t^5.83 + 3*g1^6*g2^6*t^5.89 + (g2^12*t^5.89)/g3^2 + (g1^3*g2^9*t^5.89)/g3 + g1^9*g2^3*g3*t^5.89 + g1^12*g3^2*t^5.89 + g1^3*g2^3*t^5.94 - 3*t^6. + t^6.06/(g1^3*g2^3) + t^6.11/(g1^6*g2^6) + t^6.28/(g1^15*g2^15) + (g1^10*t^6.42)/(g2^2*g3) + (g2^10*g3*t^6.42)/g1^2 + (g1^4*t^6.48)/(g2^2*g3^2) + (g2^4*g3^2*t^6.48)/g1^2 + g1^8*g2^8*t^6.85 + (g1^5*g2^11*t^6.85)/g3 + g1^11*g2^5*g3*t^6.85 + 4*g1^5*g2^5*t^6.91 + (g2^11*t^6.91)/(g1*g3^2) + (2*g1^2*g2^8*t^6.91)/g3 + 2*g1^8*g2^2*g3*t^6.91 + (g1^11*g3^2*t^6.91)/g2 + 2*g1^2*g2^2*t^6.96 + (g2^5*t^6.96)/(g1*g3) + (g1^5*g3*t^6.96)/g2 - t^7.02/(g1*g2) + t^7.08/(g1^4*g2^4) + (2*t^7.13)/(g1^7*g2^7) + t^7.13/(g1^10*g2^4*g3) + (g3*t^7.13)/(g1^4*g2^10) + t^7.19/(g1^10*g2^10) + (g1^15*t^7.39)/g2^3 + (g2^15*t^7.39)/g1^3 - (g1^6*t^7.44)/g3^2 + (g1^9*t^7.44)/(g2^3*g3) + (g2^9*g3*t^7.44)/g1^3 - g2^6*g3^2*t^7.44 + (g1^3*t^7.5)/(g2^3*g3^2) + (g2^3*g3^2*t^7.5)/g1^3 + t^7.56/(g1^3*g2^3*g3^3) + t^7.56/(g2^6*g3^2) + (g3^2*t^7.56)/g1^6 + (g3^3*t^7.56)/(g1^3*g2^3) + g1^10*g2^10*t^7.81 + g1^7*g2^7*t^7.87 + (2*g1^4*g2^10*t^7.87)/g3 + 2*g1^10*g2^4*g3*t^7.87 + 6*g1^4*g2^4*t^7.92 + (2*g2^10*t^7.92)/(g1^2*g3^2) + (2*g1*g2^7*t^7.92)/g3 + 2*g1^7*g2*g3*t^7.92 + (2*g1^10*g3^2*t^7.92)/g2^2 + 4*g1*g2*t^7.98 + (g2^7*t^7.98)/(g1^5*g3^2) + (3*g2^4*t^7.98)/(g1^2*g3) + (3*g1^4*g3*t^7.98)/g2^2 + (g1^7*g3^2*t^7.98)/g2^5 + t^8.04/(g1^2*g2^2) - (3*t^8.09)/(g1^5*g2^5) - t^8.09/(g1^8*g2^2*g3) - (g3*t^8.09)/(g1^2*g2^8) + t^8.15/(g1^8*g2^8) + t^8.21/(g1^11*g2^11) + (g1^17*g2^5*t^8.29)/g3 + g1^5*g2^17*g3*t^8.29 + (g1^17*t^8.35)/g2 + (g2^17*t^8.35)/g1 + (2*g1^11*g2^5*t^8.35)/g3^2 + (g1^14*g2^2*t^8.35)/g3 + g1^2*g2^14*g3*t^8.35 + 2*g1^5*g2^11*g3^2*t^8.35 + t^8.38/(g1^20*g2^20) + (g1^5*g2^5*t^8.41)/g3^3 + (g1^8*g2^2*t^8.41)/g3^2 + (g1^11*t^8.41)/(g2*g3) + (g2^11*g3*t^8.41)/g1 + g1^2*g2^8*g3^2*t^8.41 + g1^5*g2^5*g3^3*t^8.41 - (g1^11*t^8.46)/g2^7 - (g2^11*t^8.46)/g1^7 - (g1^5*t^8.46)/(g2*g3^2) - (g2^5*g3^2*t^8.46)/g1 - t^8.52/(g1*g2*g3^3) - (g1^5*t^8.52)/(g2^7*g3) - (g2^5*g3*t^8.52)/g1^7 - (g3^3*t^8.52)/(g1*g2) + g1^18*g2^18*t^8.66 + g1^15*g2^15*t^8.72 + (g1^12*g2^18*t^8.72)/g3 + g1^18*g2^12*g3*t^8.72 + 3*g1^12*g2^12*t^8.77 + (g1^6*g2^18*t^8.77)/g3^2 + (g1^9*g2^15*t^8.77)/g3 + g1^15*g2^9*g3*t^8.77 + g1^18*g2^6*g3^2*t^8.77 + 3*g1^9*g2^9*t^8.83 + (g2^18*t^8.83)/g3^3 + (g1^3*g2^15*t^8.83)/g3^2 + (2*g1^6*g2^12*t^8.83)/g3 + 2*g1^12*g2^6*g3*t^8.83 + g1^15*g2^3*g3^2*t^8.83 + g1^18*g3^3*t^8.83 - 3*g1^6*g2^6*t^8.89 + (g1^3*g2^9*t^8.89)/g3 + g1^9*g2^3*g3*t^8.89 + (g2^9*t^8.94)/(g1^3*g3^2) - (4*g2^6*t^8.94)/g3 - 4*g1^6*g3*t^8.94 + (g1^9*g3^2*t^8.94)/g2^3 - t^4.02/(g1*g2*y) - t^5.04/(g1^2*g2^2*y) - t^6.11/(g1^6*g2^6*y) - (g1^5*g2^5*t^6.91)/y - (g1^2*g2^2*t^6.96)/y - (g2^5*t^6.96)/(g1*g3*y) - (g1^5*g3*t^6.96)/(g2*y) - t^7.02/(g1*g2*y) - t^7.13/(g1^7*g2^7*y) - (g2^4*t^7.98)/(g1^2*g3*y) - (g1^4*g3*t^7.98)/(g2^2*y) + (g2*t^8.04)/(g1^5*g3*y) + (g1*g3*t^8.04)/(g2^5*y) + t^8.09/(g1^5*g2^5*y) - t^8.21/(g1^11*g2^11*y) + (g1^9*g2^9*t^8.83)/y + (g1^6*g2^12*t^8.83)/(g3*y) + (g1^12*g2^6*g3*t^8.83)/y + (2*g1^6*g2^6*t^8.89)/y + (g1^3*g2^9*t^8.89)/(g3*y) + (g1^9*g2^3*g3*t^8.89)/y + (g1^3*g2^3*t^8.94)/y + (g2^6*t^8.94)/(g3*y) + (g1^6*g3*t^8.94)/y - (t^4.02*y)/(g1*g2) - (t^5.04*y)/(g1^2*g2^2) - (t^6.11*y)/(g1^6*g2^6) - g1^5*g2^5*t^6.91*y - g1^2*g2^2*t^6.96*y - (g2^5*t^6.96*y)/(g1*g3) - (g1^5*g3*t^6.96*y)/g2 - (t^7.02*y)/(g1*g2) - (t^7.13*y)/(g1^7*g2^7) - (g2^4*t^7.98*y)/(g1^2*g3) - (g1^4*g3*t^7.98*y)/g2^2 + (g2*t^8.04*y)/(g1^5*g3) + (g1*g3*t^8.04*y)/g2^5 + (t^8.09*y)/(g1^5*g2^5) - (t^8.21*y)/(g1^11*g2^11) + g1^9*g2^9*t^8.83*y + (g1^6*g2^12*t^8.83*y)/g3 + g1^12*g2^6*g3*t^8.83*y + 2*g1^6*g2^6*t^8.89*y + (g1^3*g2^9*t^8.89*y)/g3 + g1^9*g2^3*g3*t^8.89*y + g1^3*g2^3*t^8.94*y + (g2^6*t^8.94*y)/g3 + g1^6*g3*t^8.94*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57293 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ | 1.4741 | 1.6834 | 0.8757 | [M:[0.6772, 1.3291], q:[0.4937, 0.5], qb:[0.4937, 0.5], phi:[0.3354]] | t^2.032 + t^2.962 + 2*t^2.981 + t^3. + t^3.019 + 3*t^3.987 + t^4.006 + t^4.063 + t^4.975 + 3*t^4.994 + 3*t^5.013 + t^5.032 + t^5.051 + 2*t^5.468 + 2*t^5.487 + t^5.924 + 2*t^5.943 + 4*t^5.962 + t^5.981 - t^6. - t^4.006/y - t^5.013/y - t^4.006*y - t^5.013*y | detail |