Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57903 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{1}^{2}$ 1.4741 1.6831 0.8758 [X:[], M:[0.6745, 1.3302], q:[0.4929, 0.5024], qb:[0.4976, 0.4976], phi:[0.3349]] [X:[], M:[[-5, -5], [2, 2]], q:[[6, 0], [0, -6]], qb:[[0, 6], [0, 6]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ ${}$ -2 t^2.02 + 2*t^2.97 + 2*t^3. + t^3.01 + t^3.98 + t^3.99 + 2*t^4. + t^4.05 + 2*t^4.98 + 2*t^5. + 2*t^5.01 + 2*t^5.02 + t^5.04 + t^5.47 + 2*t^5.48 + t^5.5 + 3*t^5.94 + 3*t^5.97 + 2*t^5.99 - 2*t^6. + 3*t^6.01 + 2*t^6.03 + t^6.07 + t^6.47 + 2*t^6.49 + t^6.5 + 2*t^6.95 + 2*t^6.96 + 5*t^6.98 + 3*t^6.99 + 2*t^7. + 4*t^7.02 + t^7.03 + 2*t^7.05 + t^7.06 + t^7.45 + 3*t^7.49 + 2*t^7.51 + t^7.52 + t^7.54 + 5*t^7.95 + 2*t^7.97 + 9*t^7.98 + 5*t^8. + 5*t^8.01 + 2*t^8.04 + 2*t^8.05 + t^8.09 + 2*t^8.44 + 4*t^8.46 + 2*t^8.47 + t^8.48 + t^8.5 - t^8.51 - t^8.53 + 4*t^8.92 + 4*t^8.94 + 5*t^8.96 - 6*t^8.97 + 10*t^8.99 - t^4./y - t^5.01/y - t^6.03/y - (2*t^6.98)/y - (2*t^7.)/y - t^7.02/y - t^7.03/y - t^7.98/y + (2*t^8.)/y - (2*t^8.01)/y + t^8.02/y + t^8.04/y - t^8.05/y + t^8.94/y + (4*t^8.97)/y + t^8.99/y - t^4.*y - t^5.01*y - t^6.03*y - 2*t^6.98*y - 2*t^7.*y - t^7.02*y - t^7.03*y - t^7.98*y + 2*t^8.*y - 2*t^8.01*y + t^8.02*y + t^8.04*y - t^8.05*y + t^8.94*y + 4*t^8.97*y + t^8.99*y t^2.02/(g1^5*g2^5) + 2*g1^6*g2^6*t^2.97 + 2*t^3. + t^3.01/(g1^3*g2^3) + g1^5*g2^5*t^3.98 + g1^2*g2^2*t^3.99 + (2*t^4.)/(g1*g2) + t^4.05/(g1^10*g2^10) + 2*g1^4*g2^4*t^4.98 + 2*g1*g2*t^5. + (2*t^5.01)/(g1^2*g2^2) + (2*t^5.02)/(g1^5*g2^5) + t^5.04/(g1^8*g2^8) + (g1^11*t^5.47)/g2^7 + (2*g2^17*t^5.48)/g1 + (g1^5*t^5.5)/g2^13 + 3*g1^12*g2^12*t^5.94 + 3*g1^6*g2^6*t^5.97 + 2*g1^3*g2^3*t^5.99 - 2*t^6. + (3*t^6.01)/(g1^3*g2^3) + (2*t^6.03)/(g1^6*g2^6) + t^6.07/(g1^15*g2^15) + (g1^10*t^6.47)/g2^8 + (2*g2^16*t^6.49)/g1^2 + (g1^4*t^6.5)/g2^14 + 2*g1^11*g2^11*t^6.95 + 2*g1^8*g2^8*t^6.96 + 5*g1^5*g2^5*t^6.98 + 3*g1^2*g2^2*t^6.99 + (2*t^7.)/(g1*g2) + (4*t^7.02)/(g1^4*g2^4) + t^7.03/(g1^7*g2^7) + (2*t^7.05)/(g1^10*g2^10) + t^7.06/(g1^13*g2^13) + (g1^15*t^7.45)/g2^3 + (g1^9*t^7.48)/g2^9 - g2^18*t^7.48 - (g1^6*t^7.49)/g2^12 + (4*g2^15*t^7.49)/g1^3 + (g1^3*t^7.51)/g2^15 + (g2^12*t^7.51)/g1^6 + t^7.52/g2^18 + t^7.54/(g1^3*g2^21) + 5*g1^10*g2^10*t^7.95 + 2*g1^7*g2^7*t^7.97 + 9*g1^4*g2^4*t^7.98 + 5*g1*g2*t^8. + (5*t^8.01)/(g1^2*g2^2) + (2*t^8.04)/(g1^8*g2^8) + (2*t^8.05)/(g1^11*g2^11) + t^8.09/(g1^20*g2^20) + (2*g1^17*t^8.44)/g2 + 4*g1^5*g2^23*t^8.46 + (2*g1^11*t^8.47)/g2^7 + (g1^8*t^8.48)/g2^10 - (g1^5*t^8.5)/g2^13 + (2*g2^14*t^8.5)/g1^4 + (g1^2*t^8.51)/g2^16 - (2*g2^11*t^8.51)/g1^7 - t^8.53/(g1*g2^19) + 4*g1^18*g2^18*t^8.92 + 4*g1^12*g2^12*t^8.94 + 5*g1^9*g2^9*t^8.96 - 6*g1^6*g2^6*t^8.97 + 10*g1^3*g2^3*t^8.99 - t^4./(g1*g2*y) - t^5.01/(g1^2*g2^2*y) - t^6.03/(g1^6*g2^6*y) - (2*g1^5*g2^5*t^6.98)/y - (2*t^7.)/(g1*g2*y) - t^7.02/(g1^4*g2^4*y) - t^7.03/(g1^7*g2^7*y) - (g1^4*g2^4*t^7.98)/y + (2*g1*g2*t^8.)/y - (2*t^8.01)/(g1^2*g2^2*y) + t^8.02/(g1^5*g2^5*y) + t^8.04/(g1^8*g2^8*y) - t^8.05/(g1^11*g2^11*y) + (g1^12*g2^12*t^8.94)/y + (4*g1^6*g2^6*t^8.97)/y + (g1^3*g2^3*t^8.99)/y - (t^4.*y)/(g1*g2) - (t^5.01*y)/(g1^2*g2^2) - (t^6.03*y)/(g1^6*g2^6) - 2*g1^5*g2^5*t^6.98*y - (2*t^7.*y)/(g1*g2) - (t^7.02*y)/(g1^4*g2^4) - (t^7.03*y)/(g1^7*g2^7) - g1^4*g2^4*t^7.98*y + 2*g1*g2*t^8.*y - (2*t^8.01*y)/(g1^2*g2^2) + (t^8.02*y)/(g1^5*g2^5) + (t^8.04*y)/(g1^8*g2^8) - (t^8.05*y)/(g1^11*g2^11) + g1^12*g2^12*t^8.94*y + 4*g1^6*g2^6*t^8.97*y + g1^3*g2^3*t^8.99*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57293 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ 1.4741 1.6834 0.8757 [M:[0.6772, 1.3291], q:[0.4937, 0.5], qb:[0.4937, 0.5], phi:[0.3354]] t^2.032 + t^2.962 + 2*t^2.981 + t^3. + t^3.019 + 3*t^3.987 + t^4.006 + t^4.063 + t^4.975 + 3*t^4.994 + 3*t^5.013 + t^5.032 + t^5.051 + 2*t^5.468 + 2*t^5.487 + t^5.924 + 2*t^5.943 + 4*t^5.962 + t^5.981 - t^6. - t^4.006/y - t^5.013/y - t^4.006*y - t^5.013*y detail