Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57902 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ + ${ }M_{1}\phi_{1}^{3}$ 1.4214 1.648 0.8625 [X:[], M:[0.875, 1.25], q:[0.375, 0.5], qb:[0.375, 0.5], phi:[0.375]] [X:[], M:[[0, 0], [0, 0]], q:[[-1, 0], [0, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2 {a: 23289/16384, c: 27001/16384, M1: 7/8, M2: 5/4, q1: 3/8, q2: 1/2, qb1: 3/8, qb2: 1/2, phi1: 3/8}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{1}\tilde{q}_{1}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}$, ${ }M_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{2}$ ${}\phi_{1}^{2}q_{1}^{2}q_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}^{2}\tilde{q}_{2}$ 5 t^2.25 + 3*t^2.62 + t^3. + t^3.38 + 3*t^3.75 + t^4.12 + 2*t^4.5 + 7*t^4.88 + 10*t^5.25 + 2*t^5.62 + 5*t^6. + 11*t^6.38 + 9*t^6.75 + 10*t^7.12 + 25*t^7.5 + 26*t^7.88 + 7*t^8.25 + 13*t^8.62 - t^4.12/y - t^5.25/y - t^6.38/y - (3*t^6.75)/y - t^7.12/y - t^7.5/y + (3*t^8.25)/y + (2*t^8.62)/y - t^4.12*y - t^5.25*y - t^6.38*y - 3*t^6.75*y - t^7.12*y - t^7.5*y + 3*t^8.25*y + 2*t^8.62*y t^2.25 + t^2.62 + (g1*t^2.62)/g2 + (g2*t^2.62)/g1 + t^3. + t^3.38 + t^3.75 + (g1*t^3.75)/g2 + (g2*t^3.75)/g1 + t^4.12 + 2*t^4.5 + t^4.88 + t^4.88/(g1^2*g2) + (2*g1*t^4.88)/g2 + (2*g2*t^4.88)/g1 + g1^2*g2*t^4.88 + 4*t^5.25 + t^5.25/(g1*g2^2) + (g1^2*t^5.25)/g2^2 + (g1*t^5.25)/g2 + (g2*t^5.25)/g1 + (g2^2*t^5.25)/g1^2 + g1*g2^2*t^5.25 + 2*t^5.62 - t^6. + t^6./(g1^2*g2) + (2*g1*t^6.)/g2 + (2*g2*t^6.)/g1 + g1^2*g2*t^6. + 5*t^6.38 + t^6.38/(g1*g2^2) + (g1^2*t^6.38)/g2^2 + (g1*t^6.38)/g2 + (g2*t^6.38)/g1 + (g2^2*t^6.38)/g1^2 + g1*g2^2*t^6.38 + 5*t^6.75 + t^6.75/g1^3 + g1^3*t^6.75 + (g1*t^6.75)/g2 + (g2*t^6.75)/g1 - t^7.12/(g1*g2^2) + (2*t^7.12)/(g1^2*g2) + (4*g1*t^7.12)/g2 + (4*g2*t^7.12)/g1 + 2*g1^2*g2*t^7.12 - g1*g2^2*t^7.12 + 9*t^7.5 + t^7.5/g1^3 + g1^3*t^7.5 + (3*t^7.5)/(g1*g2^2) + (3*g1^2*t^7.5)/g2^2 + (g1*t^7.5)/g2 + (g2*t^7.5)/g1 + (3*g2^2*t^7.5)/g1^2 + 3*g1*g2^2*t^7.5 + 6*t^7.88 + (2*t^7.88)/g2^3 + (g1^3*t^7.88)/g2^3 + t^7.88/(g1*g2^2) + (g1^2*t^7.88)/g2^2 + t^7.88/(g1^2*g2) + (4*g1*t^7.88)/g2 + (4*g2*t^7.88)/g1 + g1^2*g2*t^7.88 + (g2^2*t^7.88)/g1^2 + g1*g2^2*t^7.88 + 2*g2^3*t^7.88 + (g2^3*t^7.88)/g1^3 - t^8.25 - t^8.25/g1^3 - g1^3*t^8.25 - t^8.25/(g1*g2^2) + (2*t^8.25)/(g1^2*g2) + (4*g1*t^8.25)/g2 + (4*g2*t^8.25)/g1 + 2*g1^2*g2*t^8.25 - g1*g2^2*t^8.25 + 7*t^8.62 + (2*t^8.62)/g1^3 + 2*g1^3*t^8.62 - t^8.62/g2^3 + (3*t^8.62)/(g1*g2^2) + (3*g1^2*t^8.62)/g2^2 - t^8.62/(g1^2*g2) - (3*g1*t^8.62)/g2 - (3*g2*t^8.62)/g1 - g1^2*g2*t^8.62 + (3*g2^2*t^8.62)/g1^2 + 3*g1*g2^2*t^8.62 - g2^3*t^8.62 - t^4.12/y - t^5.25/y - t^6.38/y - t^6.75/y - (g1*t^6.75)/(g2*y) - (g2*t^6.75)/(g1*y) - t^7.12/y - t^7.5/y + t^8.25/y + (g1*t^8.25)/(g2*y) + (g2*t^8.25)/(g1*y) + (g1*t^8.62)/(g2*y) + (g2*t^8.62)/(g1*y) - t^4.12*y - t^5.25*y - t^6.38*y - t^6.75*y - (g1*t^6.75*y)/g2 - (g2*t^6.75*y)/g1 - t^7.12*y - t^7.5*y + t^8.25*y + (g1*t^8.25*y)/g2 + (g2*t^8.25*y)/g1 + (g1*t^8.62*y)/g2 + (g2*t^8.62*y)/g1


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57293 SU3adj1nf2 ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ 1.4741 1.6834 0.8757 [M:[0.6772, 1.3291], q:[0.4937, 0.5], qb:[0.4937, 0.5], phi:[0.3354]] t^2.032 + t^2.962 + 2*t^2.981 + t^3. + t^3.019 + 3*t^3.987 + t^4.006 + t^4.063 + t^4.975 + 3*t^4.994 + 3*t^5.013 + t^5.032 + t^5.051 + 2*t^5.468 + 2*t^5.487 + t^5.924 + 2*t^5.943 + 4*t^5.962 + t^5.981 - t^6. - t^4.006/y - t^5.013/y - t^4.006*y - t^5.013*y detail