Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57877 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}^{2}q_{1}\tilde{q}_{2}$ 1.1716 1.3407 0.8739 [X:[1.5295], M:[0.7058, 0.7058, 0.7058], q:[0.4118, 0.8824], qb:[0.8824, 0.4118], phi:[0.2353]] [X:[[0, 0, 2]], M:[[-1, 1, -5], [1, -1, -1], [0, 0, -3]], q:[[0, -1, 5], [-1, 0, 1]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{3}$, ${ }\phi_{1}^{3}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{3}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{1}M_{2}$, ${ }M_{3}^{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }\phi_{1}^{6}$, ${ }M_{2}M_{3}$, ${ }M_{2}\phi_{1}^{3}$, ${ }M_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{4}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}^{3}q_{1}^{3}$ ${}$ -5 4*t^2.12 + t^2.47 + t^3.18 + 10*t^4.23 + 5*t^4.59 + t^4.94 + 5*t^5.29 + t^5.65 + 4*t^5.82 - 5*t^6. + 21*t^6.35 + 13*t^6.71 + 5*t^7.06 + 12*t^7.41 + 5*t^7.77 + 12*t^7.94 - 17*t^8.12 + 4*t^8.3 + 34*t^8.47 - 4*t^8.65 + 20*t^8.82 + t^8.12/y^2 - (4*t^8.82)/y^2 - t^3.71/y - t^4.41/y - (4*t^5.82)/y - t^6.18/y - (4*t^6.53)/y - t^6.88/y + (6*t^7.23)/y + (4*t^7.59)/y - (10*t^7.94)/y + (3*t^8.29)/y - (10*t^8.65)/y - t^3.71*y - t^4.41*y - 4*t^5.82*y - t^6.18*y - 4*t^6.53*y - t^6.88*y + 6*t^7.23*y + 4*t^7.59*y - 10*t^7.94*y + 3*t^8.29*y - 10*t^8.65*y + t^8.12*y^2 - 4*t^8.82*y^2 (g2*t^2.12)/(g1*g3^5) + (2*t^2.12)/g3^3 + (g1*t^2.12)/(g2*g3) + g3^5*t^2.47 + g3^4*t^3.18 + (g2^2*t^4.23)/(g1^2*g3^10) + (2*g2*t^4.23)/(g1*g3^8) + (4*t^4.23)/g3^6 + (2*g1*t^4.23)/(g2*g3^4) + (g1^2*t^4.23)/(g2^2*g3^2) + (g2*t^4.59)/g1 + 3*g3^2*t^4.59 + (g1*g3^4*t^4.59)/g2 + g3^10*t^4.94 + (g2*t^5.29)/(g1*g3) + 3*g3*t^5.29 + (g1*g3^3*t^5.29)/g2 + g3^9*t^5.65 + (g2^3*t^5.82)/g3^3 + (g1*g2^2*t^5.82)/g3 + (g3^10*t^5.82)/(g1*g2^2) + (g3^12*t^5.82)/g2^3 - 3*t^6. - (g2*t^6.)/(g1*g3^2) - (g1*g3^2*t^6.)/g2 + (g2^3*t^6.35)/(g1^3*g3^15) + (2*g2^2*t^6.35)/(g1^2*g3^13) + (4*g2*t^6.35)/(g1*g3^11) + (6*t^6.35)/g3^9 + (4*g1*t^6.35)/(g2*g3^7) + (2*g1^2*t^6.35)/(g2^2*g3^5) + (g1^3*t^6.35)/(g2^3*g3^3) + g3^8*t^6.35 + (g2^2*t^6.71)/(g1^2*g3^5) + (3*g2*t^6.71)/(g1*g3^3) + (5*t^6.71)/g3 + (3*g1*g3*t^6.71)/g2 + (g1^2*g3^3*t^6.71)/g2^2 + (g2*g3^5*t^7.06)/g1 + 3*g3^7*t^7.06 + (g1*g3^9*t^7.06)/g2 + (2*g1*t^7.41)/g2 + (g2^2*t^7.41)/(g1^2*g3^6) + (2*g2*t^7.41)/(g1*g3^4) + (5*t^7.41)/g3^2 + (g1^2*g3^2*t^7.41)/g2^2 + g3^15*t^7.41 + (g2*g3^4*t^7.77)/g1 + 3*g3^6*t^7.77 + (g1*g3^8*t^7.77)/g2 + (g2^4*t^7.94)/(g1*g3^8) + (2*g2^3*t^7.94)/g3^6 + (2*g1*g2^2*t^7.94)/g3^4 + (g1^2*g2*t^7.94)/g3^2 + (g3^5*t^7.94)/(g1^2*g2) + (2*g3^7*t^7.94)/(g1*g2^2) + (2*g3^9*t^7.94)/g2^3 + (g1*g3^11*t^7.94)/g2^4 - (g2^2*t^8.12)/(g1^2*g3^7) - (5*g2*t^8.12)/(g1*g3^5) - (6*t^8.12)/g3^3 - (5*g1*t^8.12)/(g2*g3) - (g1^2*g3*t^8.12)/g2^2 + g3^14*t^8.12 + g2^3*g3^2*t^8.3 + g1*g2^2*g3^4*t^8.3 + (g3^15*t^8.3)/(g1*g2^2) + (g3^17*t^8.3)/g2^3 + (g2^4*t^8.47)/(g1^4*g3^20) + (2*g2^3*t^8.47)/(g1^3*g3^18) + (4*g2^2*t^8.47)/(g1^2*g3^16) + (6*g2*t^8.47)/(g1*g3^14) + (9*t^8.47)/g3^12 + (6*g1*t^8.47)/(g2*g3^10) + (4*g1^2*t^8.47)/(g2^2*g3^8) + (2*g1^3*t^8.47)/(g2^3*g3^6) + (g1^4*t^8.47)/(g2^4*g3^4) - g3^5*t^8.47 - (g2^3*t^8.65)/g3^7 - (g1*g2^2*t^8.65)/g3^5 - (g3^6*t^8.65)/(g1*g2^2) - (g3^8*t^8.65)/g2^3 + (3*g1^2*t^8.82)/g2^2 + (g2^3*t^8.82)/(g1^3*g3^10) + (3*g2^2*t^8.82)/(g1^2*g3^8) + (3*g2*t^8.82)/(g1*g3^6) + (5*t^8.82)/g3^4 + (3*g1*t^8.82)/(g2*g3^2) + (g1^3*g3^2*t^8.82)/g2^3 + g3^13*t^8.82 + t^8.12/(g3^3*y^2) - (g2*t^8.82)/(g1*g3^6*y^2) - (2*t^8.82)/(g3^4*y^2) - (g1*t^8.82)/(g2*g3^2*y^2) - t^3.71/(g3*y) - t^4.41/(g3^2*y) - (g2*t^5.82)/(g1*g3^6*y) - (2*t^5.82)/(g3^4*y) - (g1*t^5.82)/(g2*g3^2*y) - (g3^4*t^6.18)/y - (g2*t^6.53)/(g1*g3^7*y) - (2*t^6.53)/(g3^5*y) - (g1*t^6.53)/(g2*g3^3*y) - (g3^3*t^6.88)/y + (2*g2*t^7.23)/(g1*g3^8*y) + (2*t^7.23)/(g3^6*y) + (2*g1*t^7.23)/(g2*g3^4*y) + (g2*t^7.59)/(g1*y) + (2*g3^2*t^7.59)/y + (g1*g3^4*t^7.59)/(g2*y) - (g2^2*t^7.94)/(g1^2*g3^11*y) - (2*g2*t^7.94)/(g1*g3^9*y) - (4*t^7.94)/(g3^7*y) - (2*g1*t^7.94)/(g2*g3^5*y) - (g1^2*t^7.94)/(g2^2*g3^3*y) + (g2*t^8.29)/(g1*g3*y) + (g3*t^8.29)/y + (g1*g3^3*t^8.29)/(g2*y) - (g2^2*t^8.65)/(g1^2*g3^12*y) - (2*g2*t^8.65)/(g1*g3^10*y) - (4*t^8.65)/(g3^8*y) - (2*g1*t^8.65)/(g2*g3^6*y) - (g1^2*t^8.65)/(g2^2*g3^4*y) - (t^3.71*y)/g3 - (t^4.41*y)/g3^2 - (g2*t^5.82*y)/(g1*g3^6) - (2*t^5.82*y)/g3^4 - (g1*t^5.82*y)/(g2*g3^2) - g3^4*t^6.18*y - (g2*t^6.53*y)/(g1*g3^7) - (2*t^6.53*y)/g3^5 - (g1*t^6.53*y)/(g2*g3^3) - g3^3*t^6.88*y + (2*g2*t^7.23*y)/(g1*g3^8) + (2*t^7.23*y)/g3^6 + (2*g1*t^7.23*y)/(g2*g3^4) + (g2*t^7.59*y)/g1 + 2*g3^2*t^7.59*y + (g1*g3^4*t^7.59*y)/g2 - (g2^2*t^7.94*y)/(g1^2*g3^11) - (2*g2*t^7.94*y)/(g1*g3^9) - (4*t^7.94*y)/g3^7 - (2*g1*t^7.94*y)/(g2*g3^5) - (g1^2*t^7.94*y)/(g2^2*g3^3) + (g2*t^8.29*y)/(g1*g3) + g3*t^8.29*y + (g1*g3^3*t^8.29*y)/g2 - (g2^2*t^8.65*y)/(g1^2*g3^12) - (2*g2*t^8.65*y)/(g1*g3^10) - (4*t^8.65*y)/g3^8 - (2*g1*t^8.65*y)/(g2*g3^6) - (g1^2*t^8.65*y)/(g2^2*g3^4) + (t^8.12*y^2)/g3^3 - (g2*t^8.82*y^2)/(g1*g3^6) - (2*t^8.82*y^2)/g3^4 - (g1*t^8.82*y^2)/(g2*g3^2)


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57291 SU3adj1nf2 ${}M_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}q_{2}\tilde{q}_{1}$ 1.1512 1.3023 0.8839 [X:[1.5271], M:[0.7093, 0.7093], q:[0.4089, 0.8818], qb:[0.8818, 0.4089], phi:[0.2364]] 3*t^2.128 + t^2.454 + t^3.163 + t^3.872 + 6*t^4.256 + 4*t^4.581 + t^4.907 + 4*t^5.291 + t^5.616 + 4*t^5.808 - 2*t^6. - t^3.709/y - t^4.419/y - (3*t^5.837)/y - t^3.709*y - t^4.419*y - 3*t^5.837*y detail