Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57869 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ 1.4749 1.6827 0.8765 [X:[1.3376], M:[0.9696, 1.0064, 0.6738], q:[0.4856, 0.521], qb:[0.4967, 0.5094], phi:[0.3312]] [X:[[0, 0, 2]], M:[[-1, -1, 0], [0, 0, 3], [1, 1, -11]], q:[[-1, -2, 12], [1, 0, 0]], qb:[[0, 1, -6], [0, 1, 0]], phi:[[0, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}M_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ ${}M_{2}q_{1}\tilde{q}_{2}$ -2 t^2.02 + t^2.91 + t^2.95 + t^2.99 + t^3.02 + t^3.05 + t^3.94 + t^4.01 + t^4.04 + t^4.05 + t^4.08 + 2*t^4.93 + 2*t^4.97 + t^5.01 + 2*t^5.04 + t^5.07 + t^5.08 + t^5.47 + t^5.5 + t^5.54 + t^5.58 + t^5.82 + t^5.86 + t^5.89 + 2*t^5.93 + t^5.96 + 2*t^5.97 - 2*t^6. + t^6.03 + t^6.04 + t^6.06 + 2*t^6.07 + t^6.11 + t^6.46 + t^6.5 + t^6.53 + t^6.57 + t^6.85 + t^6.92 + t^6.93 + t^6.95 + 3*t^6.96 + 2*t^6.99 + t^7. + 3*t^7.03 + 2*t^7.06 + 3*t^7.07 + 3*t^7.1 + t^7.14 + t^7.35 + t^7.45 + t^7.49 + t^7.52 + t^7.56 + t^7.57 + t^7.6 + t^7.67 + 2*t^7.84 + 3*t^7.88 + 3*t^7.92 + 3*t^7.95 + t^7.96 + t^7.98 + 4*t^7.99 - 3*t^8.02 + 4*t^8.03 + 4*t^8.06 + 4*t^8.09 + t^8.1 + 3*t^8.13 + t^8.17 + t^8.46 + 2*t^8.49 + t^8.52 + t^8.53 + 2*t^8.56 + t^8.6 + t^8.73 + t^8.76 + t^8.8 + 2*t^8.84 + 3*t^8.87 + t^8.88 - t^8.91 + t^8.92 + t^8.94 - t^8.95 + t^8.96 + t^8.97 + 6*t^8.98 - 2*t^8.99 + t^8.98/y^2 - t^3.99/y - t^4.99/y - t^6.01/y - t^6.9/y - t^6.94/y - t^6.98/y - (2*t^7.01)/y - t^7.05/y - t^7.9/y + t^7.97/y - t^8.04/y + t^8.07/y + t^8.86/y + t^8.89/y - t^8.92/y + t^8.93/y + t^8.96/y + t^8.97/y - t^3.99*y - t^4.99*y - t^6.01*y - t^6.9*y - t^6.94*y - t^6.98*y - 2*t^7.01*y - t^7.05*y - t^7.9*y + t^7.97*y - t^8.04*y + t^8.07*y + t^8.86*y + t^8.89*y - t^8.92*y + t^8.93*y + t^8.96*y + t^8.97*y + t^8.98*y^2 (g1*g2*t^2.02)/g3^11 + t^2.91/(g1*g2) + (g3^6*t^2.95)/(g1*g2) + (g3^12*t^2.99)/(g1*g2) + g3^3*t^3.02 + (g1*g2*t^3.05)/g3^6 + (g3^5*t^3.94)/(g1*g2) + g3^2*t^4.01 + (g1^2*g2^2*t^4.04)/g3^22 + (g1*g2*t^4.05)/g3^7 + (g1*g2*t^4.08)/g3 + t^4.93/g3^11 + (g3^4*t^4.93)/(g1*g2) + t^4.97/g3^5 + (g3^10*t^4.97)/(g1*g2) + g3*t^5.01 + (2*g1*g2*t^5.04)/g3^8 + (g1^2*g2^2*t^5.07)/g3^17 + (g1*g2*t^5.08)/g3^2 + (g3^23*t^5.47)/(g1*g2^4) + (g2^3*t^5.5)/g3^13 + (g2^3*t^5.54)/g3^7 + (g1*g3^11*t^5.58)/g2^2 + t^5.82/(g1^2*g2^2) + (g3^6*t^5.86)/(g1^2*g2^2) + (g3^12*t^5.89)/(g1^2*g2^2) + (g3^3*t^5.93)/(g1*g2) + (g3^18*t^5.93)/(g1^2*g2^2) + t^5.96/g3^6 + (g3^9*t^5.97)/(g1*g2) + (g3^24*t^5.97)/(g1^2*g2^2) - 3*t^6. + (g3^15*t^6.)/(g1*g2) + (g1*g2*t^6.03)/g3^9 + g3^6*t^6.04 + (g1^3*g2^3*t^6.06)/g3^33 + (g1^2*g2^2*t^6.07)/g3^18 + (g1*g2*t^6.07)/g3^3 + (g1^2*g2^2*t^6.11)/g3^12 + (g3^22*t^6.46)/(g1*g2^4) + (g2^3*t^6.5)/g3^14 + (g2^3*t^6.53)/g3^8 + (g1*g3^10*t^6.57)/g2^2 + (g3^5*t^6.85)/(g1^2*g2^2) + (g3^2*t^6.92)/(g1*g2) + (g3^17*t^6.93)/(g1^2*g2^2) + (g1*g2*t^6.95)/g3^22 + t^6.96/g3^7 + (2*g3^8*t^6.96)/(g1*g2) + (g1*g2*t^6.99)/g3^16 + t^6.99/g3 + (g3^14*t^7.)/(g1*g2) + (g1*g2*t^7.03)/g3^10 + 2*g3^5*t^7.03 + (2*g1^2*g2^2*t^7.06)/g3^19 + (2*g1*g2*t^7.07)/g3^4 + g3^11*t^7.07 + (g1^3*g2^3*t^7.1)/g3^28 + (g1^2*g2^2*t^7.1)/g3^13 + g1*g2*g3^2*t^7.1 + (g1^2*g2^2*t^7.14)/g3^7 + (g3^33*t^7.35)/(g1^3*g2^6) + (g2^3*t^7.45)/g3^21 - (g2^2*t^7.46)/(g1*g3^6) + (g3^21*t^7.46)/(g1*g2^4) + (g2^3*t^7.49)/g3^15 + (g1*g2^4*t^7.52)/g3^24 + (g2^3*t^7.53)/g3^9 - (g3^18*t^7.53)/g2^3 + (g1*g3^9*t^7.56)/g2^2 + (g2^3*t^7.57)/g3^3 + (g1^2*t^7.6)/g2 + (g1^3*t^7.67)/g3^3 + t^7.84/(g1*g2*g3^11) + (g3^4*t^7.84)/(g1^2*g2^2) + t^7.88/(g1*g2*g3^5) + (2*g3^10*t^7.88)/(g1^2*g2^2) + (g3*t^7.92)/(g1*g2) + (2*g3^16*t^7.92)/(g1^2*g2^2) + t^7.95/g3^8 + (2*g3^7*t^7.95)/(g1*g2) + (g3^22*t^7.96)/(g1^2*g2^2) + (g1*g2*t^7.98)/g3^17 + (3*t^7.99)/g3^2 + (g3^13*t^7.99)/(g1*g2) - (3*g1*g2*t^8.02)/g3^11 + 4*g3^4*t^8.03 + (g1^2*g2^2*t^8.06)/g3^20 + (2*g1*g2*t^8.06)/g3^5 + g3^10*t^8.06 + (g1^4*g2^4*t^8.09)/g3^44 + (g1^3*g2^3*t^8.09)/g3^29 + (2*g1^2*g2^2*t^8.09)/g3^14 + g1*g2*g3*t^8.1 + (g1^3*g2^3*t^8.13)/g3^23 + (2*g1^2*g2^2*t^8.13)/g3^8 + (g1^2*g2^2*t^8.17)/g3^2 + (g3^35*t^8.46)/(g1^2*g2^5) + (g2^2*t^8.49)/(g1*g3) + (g3^26*t^8.49)/(g1*g2^4) + (g2^3*t^8.52)/g3^10 + (g2^2*g3^5*t^8.53)/g1 + (g2^3*t^8.56)/g3^4 + (g3^23*t^8.56)/g2^3 + (g1*g3^14*t^8.6)/g2^2 + t^8.73/(g1^3*g2^3) + (g3^6*t^8.76)/(g1^3*g2^3) + (g3^12*t^8.8)/(g1^3*g2^3) + (g3^3*t^8.84)/(g1^2*g2^2) + (g3^18*t^8.84)/(g1^3*g2^3) + t^8.87/(g1*g2*g3^6) + (2*g3^9*t^8.87)/(g1^2*g2^2) + (g3^24*t^8.88)/(g1^3*g2^3) - (3*t^8.91)/(g1*g2) + (2*g3^15*t^8.91)/(g1^2*g2^2) + (g3^30*t^8.92)/(g1^3*g2^3) + t^8.94/g3^9 - (2*g3^6*t^8.95)/(g1*g2) + (g3^21*t^8.95)/(g1^2*g2^2) + (g3^36*t^8.96)/(g1^3*g2^3) + (g1^2*g2^2*t^8.97)/g3^33 + (g1*g2*t^8.98)/g3^18 + (5*t^8.98)/g3^3 - (3*g3^12*t^8.99)/(g1*g2) + (g3^27*t^8.99)/(g1^2*g2^2) + t^8.98/(g3^3*y^2) - t^3.99/(g3*y) - t^4.99/(g3^2*y) - (g1*g2*t^6.01)/(g3^12*y) - t^6.9/(g1*g2*g3*y) - (g3^5*t^6.94)/(g1*g2*y) - (g3^11*t^6.98)/(g1*g2*y) - (g1*g2*t^7.01)/(g3^13*y) - (g3^2*t^7.01)/y - (g1*g2*t^7.05)/(g3^7*y) - t^7.9/(g1*g2*g3^2*y) + t^7.93/(g3^11*y) - (g3^4*t^7.93)/(g1*g2*y) + t^7.97/(g3^5*y) - (g1^2*g2^2*t^8.04)/(g3^23*y) + (g1^2*g2^2*t^8.07)/(g3^17*y) + (g3^6*t^8.86)/(g1^2*g2^2*y) + (g3^12*t^8.89)/(g1^2*g2^2*y) - t^8.92/(g3^12*y) + (g3^18*t^8.93)/(g1^2*g2^2*y) + t^8.96/(g3^6*y) + (g3^9*t^8.97)/(g1*g2*y) - (t^3.99*y)/g3 - (t^4.99*y)/g3^2 - (g1*g2*t^6.01*y)/g3^12 - (t^6.9*y)/(g1*g2*g3) - (g3^5*t^6.94*y)/(g1*g2) - (g3^11*t^6.98*y)/(g1*g2) - (g1*g2*t^7.01*y)/g3^13 - g3^2*t^7.01*y - (g1*g2*t^7.05*y)/g3^7 - (t^7.9*y)/(g1*g2*g3^2) + (t^7.93*y)/g3^11 - (g3^4*t^7.93*y)/(g1*g2) + (t^7.97*y)/g3^5 - (g1^2*g2^2*t^8.04*y)/g3^23 + (g1^2*g2^2*t^8.07*y)/g3^17 + (g3^6*t^8.86*y)/(g1^2*g2^2) + (g3^12*t^8.89*y)/(g1^2*g2^2) - (t^8.92*y)/g3^12 + (g3^18*t^8.93*y)/(g1^2*g2^2) + (t^8.96*y)/g3^6 + (g3^9*t^8.97*y)/(g1*g2) + (t^8.98*y^2)/g3^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57280 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}\phi_{1}^{3}$ 1.4541 1.6417 0.8857 [X:[1.3371], M:[0.9704, 1.0056], q:[0.4845, 0.5214], qb:[0.4971, 0.5082], phi:[0.3315]] t^2.911 + t^2.945 + t^2.978 + t^3.017 + t^3.055 + t^3.939 + t^3.972 + t^4.011 + t^4.05 + t^4.083 + t^4.933 + t^4.967 + t^5.044 + t^5.078 + t^5.465 + t^5.501 + t^5.535 + t^5.576 + t^5.822 + t^5.856 + t^5.889 + t^5.923 + t^5.928 + t^5.956 + t^5.961 + t^5.995 - 3*t^6. - t^3.994/y - t^4.989/y - t^3.994*y - t^4.989*y detail