Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57774 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{2}$ 1.4786 1.6888 0.8755 [X:[1.3449], M:[0.9295, 0.9641, 0.6737], q:[0.4733, 0.545], qb:[0.4908, 0.5255], phi:[0.3276]] [X:[[0, 0, 2]], M:[[-1, -1, 0], [-1, -1, 6], [1, 1, -11]], q:[[-1, -2, 12], [1, 0, 0]], qb:[[0, 1, -6], [0, 1, 0]], phi:[[0, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }X_{1}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{6}$, ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ ${}$ -4 t^2.02 + t^2.79 + 2*t^2.89 + t^2.95 + t^3. + t^3.88 + t^4.03 + t^4.04 + t^4.09 + t^4.19 + t^4.81 + t^4.86 + 2*t^4.91 + t^4.96 + t^4.97 + t^5.02 + t^5.07 + t^5.18 + t^5.46 + t^5.5 + t^5.58 + t^5.61 + t^5.67 + 2*t^5.68 + t^5.74 + 3*t^5.78 + 2*t^5.84 + 2*t^5.89 + t^5.9 + t^5.94 + t^5.99 - 4*t^6. + 2*t^6.06 - t^6.1 + t^6.11 + t^6.44 + t^6.49 + t^6.59 + 2*t^6.66 + t^6.77 + 2*t^6.82 + t^6.83 + t^6.87 + t^6.88 + 4*t^6.93 + 2*t^6.98 + t^6.99 + t^7.03 + 2*t^7.04 + 3*t^7.09 + t^7.14 + t^7.19 + t^7.21 + t^7.37 - t^7.41 + t^7.42 + t^7.47 + t^7.53 + t^7.57 - t^7.58 + t^7.6 + t^7.64 + t^7.65 + t^7.68 + t^7.69 + 2*t^7.7 + 3*t^7.75 + t^7.76 + 4*t^7.81 + 4*t^7.85 + 2*t^7.86 + 3*t^7.91 + t^7.92 + t^7.96 + 3*t^7.97 - 3*t^8.02 + 3*t^8.07 + 2*t^8.08 + t^8.13 + t^8.17 + t^8.28 + t^8.35 + t^8.37 + t^8.39 + t^8.4 + t^8.41 + 2*t^8.45 + 2*t^8.47 + 2*t^8.5 + t^8.52 + t^8.56 + 3*t^8.57 + t^8.6 - t^8.61 + t^8.62 + 2*t^8.63 + t^8.67 + 5*t^8.68 - t^8.72 + 4*t^8.73 + 2*t^8.78 - 2*t^8.79 + 5*t^8.84 + t^8.85 + 2*t^8.88 - 7*t^8.89 + t^8.9 + t^8.94 + t^8.95 + 2*t^8.96 + t^8.99 + t^8.95/y^2 - t^3.98/y - t^4.97/y - t^6./y - t^6.77/y - (2*t^6.88)/y - t^6.93/y - t^6.98/y - t^6.99/y - t^7.75/y + t^7.81/y - (2*t^7.86)/y + t^7.91/y + t^7.97/y + (2*t^8.68)/y + t^8.74/y + (2*t^8.78)/y - t^8.79/y + t^8.84/y + (2*t^8.89)/y - t^8.9/y + t^8.94/y - t^8.95/y - t^3.98*y - t^4.97*y - t^6.*y - t^6.77*y - 2*t^6.88*y - t^6.93*y - t^6.98*y - t^6.99*y - t^7.75*y + t^7.81*y - 2*t^7.86*y + t^7.91*y + t^7.97*y + 2*t^8.68*y + t^8.74*y + 2*t^8.78*y - t^8.79*y + t^8.84*y + 2*t^8.89*y - t^8.9*y + t^8.94*y - t^8.95*y + t^8.95*y^2 (g1*g2*t^2.02)/g3^11 + t^2.79/(g1*g2) + (2*g3^6*t^2.89)/(g1*g2) + t^2.95/g3^3 + (g3^12*t^3.)/(g1*g2) + (g3^5*t^3.88)/(g1*g2) + g3^2*t^4.03 + (g1^2*g2^2*t^4.04)/g3^22 + (g1*g2*t^4.09)/g3^7 + (g1*g2*t^4.19)/g3 + t^4.81/g3^11 + (g3^4*t^4.86)/(g1*g2) + (2*t^4.91)/g3^5 + (g3^10*t^4.96)/(g1*g2) + (g1*g2*t^4.97)/g3^14 + g3*t^5.02 + (g1*g2*t^5.07)/g3^8 + (g1*g2*t^5.18)/g3^2 + (g3^23*t^5.46)/(g1*g2^4) + (g2^3*t^5.5)/g3^13 + t^5.58/(g1^2*g2^2) + (g2^3*t^5.61)/g3^7 + (g1*g3^11*t^5.67)/g2^2 + (2*g3^6*t^5.68)/(g1^2*g2^2) + t^5.74/(g1*g2*g3^3) + (3*g3^12*t^5.78)/(g1^2*g2^2) + (2*g3^3*t^5.84)/(g1*g2) + (2*g3^18*t^5.89)/(g1^2*g2^2) + t^5.9/g3^6 + (g3^9*t^5.94)/(g1*g2) + (g3^24*t^5.99)/(g1^2*g2^2) - 4*t^6. + (g1^3*g2^3*t^6.06)/g3^33 + (g1*g2*t^6.06)/g3^9 - g3^6*t^6.1 + (g1^2*g2^2*t^6.11)/g3^18 + (g3^22*t^6.44)/(g1*g2^4) + (g2^3*t^6.49)/g3^14 + (g2^3*t^6.59)/g3^8 + (g3^5*t^6.66)/(g1^2*g2^2) + (g1*g3^10*t^6.66)/g2^2 + (g3^11*t^6.77)/(g1^2*g2^2) + (2*g3^2*t^6.82)/(g1*g2) + (g1*g2*t^6.83)/g3^22 + (g3^17*t^6.87)/(g1^2*g2^2) + t^6.88/g3^7 + (2*g1*g2*t^6.93)/g3^16 + (2*g3^8*t^6.93)/(g1*g2) + (2*t^6.98)/g3 + (g1^2*g2^2*t^6.99)/g3^25 + (g3^14*t^7.03)/(g1*g2) + (2*g1*g2*t^7.04)/g3^10 + (g1^2*g2^2*t^7.09)/g3^19 + 2*g3^5*t^7.09 + (g1*g2*t^7.14)/g3^4 + g3^11*t^7.19 + (g3^33*t^7.21)/(g1^3*g2^6) + (g2^3*t^7.37)/g3^21 - (g2^2*t^7.41)/(g1*g3^6) + (g3^21*t^7.42)/(g1*g2^4) + (g2^3*t^7.47)/g3^15 + (g1*g2^4*t^7.53)/g3^24 + (g2^3*t^7.57)/g3^9 - (g3^18*t^7.58)/g2^3 + t^7.6/(g1*g2*g3^11) + (g1*g3^9*t^7.64)/g2^2 + (g3^4*t^7.65)/(g1^2*g2^2) + (g2^3*t^7.68)/g3^3 + (g1^2*t^7.69)/g2 + (2*t^7.7)/(g1*g2*g3^5) + (3*g3^10*t^7.75)/(g1^2*g2^2) + t^7.76/g3^14 + (4*g3*t^7.81)/(g1*g2) + (g1^3*t^7.85)/g3^3 + (3*g3^16*t^7.85)/(g1^2*g2^2) + (2*t^7.86)/g3^8 + (3*g3^7*t^7.91)/(g1*g2) + (g1*g2*t^7.92)/g3^17 + (g3^22*t^7.96)/(g1^2*g2^2) + (3*t^7.97)/g3^2 - (3*g1*g2*t^8.02)/g3^11 + 3*g3^4*t^8.07 + (g1^4*g2^4*t^8.08)/g3^44 + (g1^2*g2^2*t^8.08)/g3^20 + (g1^3*g2^3*t^8.13)/g3^29 + g3^10*t^8.17 + (g1^2*g2^2*t^8.28)/g3^8 + (g3^29*t^8.35)/(g1^2*g2^5) + t^8.37/(g1^3*g2^3) + (g1^2*g2^2*t^8.39)/g3^2 + (g2^2*t^8.4)/(g1*g3^7) + (g3^20*t^8.41)/(g1*g2^4) + (g2^3*t^8.45)/g3^16 + (g3^35*t^8.45)/(g1^2*g2^5) + (2*g3^6*t^8.47)/(g1^3*g2^3) + (2*g2^2*t^8.5)/(g1*g3) + t^8.52/(g1^2*g2^2*g3^3) + (g2^3*t^8.56)/g3^10 + (3*g3^12*t^8.57)/(g1^3*g2^3) + (g2^2*g3^5*t^8.6)/g1 - (g1*g2^4*t^8.61)/g3^19 + (g1*g3^8*t^8.62)/g2^2 + (2*g3^3*t^8.63)/(g1^2*g2^2) + (g3^23*t^8.67)/g2^3 + t^8.68/(g1*g2*g3^6) + (4*g3^18*t^8.68)/(g1^3*g2^3) - (g1*g2^4*t^8.72)/g3^13 + (4*g3^9*t^8.73)/(g1^2*g2^2) - (g1^2*g3^5*t^8.78)/g2 + (3*g3^24*t^8.78)/(g1^3*g2^3) - (2*t^8.79)/(g1*g2) + (2*t^8.84)/g3^9 + (3*g3^15*t^8.84)/(g1^2*g2^2) + (g1^2*g2^2*t^8.85)/g3^33 + (2*g3^30*t^8.88)/(g1^3*g2^3) - (7*g3^6*t^8.89)/(g1*g2) + (g1*g2*t^8.9)/g3^18 + (g3^21*t^8.94)/(g1^2*g2^2) + t^8.95/g3^3 + (2*g1^2*g2^2*t^8.96)/g3^27 + (g3^36*t^8.99)/(g1^3*g2^3) + t^8.95/(g3^3*y^2) - t^3.98/(g3*y) - t^4.97/(g3^2*y) - (g1*g2*t^6.)/(g3^12*y) - t^6.77/(g1*g2*g3*y) - (2*g3^5*t^6.88)/(g1*g2*y) - t^6.93/(g3^4*y) - (g3^11*t^6.98)/(g1*g2*y) - (g1*g2*t^6.99)/(g3^13*y) - t^7.75/(g1*g2*g3^2*y) + t^7.81/(g3^11*y) - (2*g3^4*t^7.86)/(g1*g2*y) + t^7.91/(g3^5*y) + (g1*g2*t^7.97)/(g3^14*y) - (g1^2*g2^2*t^8.02)/(g3^23*y) + (g3*t^8.02)/y + (2*g3^6*t^8.68)/(g1^2*g2^2*y) + t^8.74/(g1*g2*g3^3*y) + (2*g3^12*t^8.78)/(g1^2*g2^2*y) - t^8.79/(g3^12*y) + (g3^3*t^8.84)/(g1*g2*y) + (2*g3^18*t^8.89)/(g1^2*g2^2*y) - t^8.9/(g3^6*y) + (g3^9*t^8.94)/(g1*g2*y) - (g1*g2*t^8.95)/(g3^15*y) - (t^3.98*y)/g3 - (t^4.97*y)/g3^2 - (g1*g2*t^6.*y)/g3^12 - (t^6.77*y)/(g1*g2*g3) - (2*g3^5*t^6.88*y)/(g1*g2) - (t^6.93*y)/g3^4 - (g3^11*t^6.98*y)/(g1*g2) - (g1*g2*t^6.99*y)/g3^13 - (t^7.75*y)/(g1*g2*g3^2) + (t^7.81*y)/g3^11 - (2*g3^4*t^7.86*y)/(g1*g2) + (t^7.91*y)/g3^5 + (g1*g2*t^7.97*y)/g3^14 - (g1^2*g2^2*t^8.02*y)/g3^23 + g3*t^8.02*y + (2*g3^6*t^8.68*y)/(g1^2*g2^2) + (t^8.74*y)/(g1*g2*g3^3) + (2*g3^12*t^8.78*y)/(g1^2*g2^2) - (t^8.79*y)/g3^12 + (g3^3*t^8.84*y)/(g1*g2) + (2*g3^18*t^8.89*y)/(g1^2*g2^2) - (t^8.9*y)/g3^6 + (g3^9*t^8.94*y)/(g1*g2) - (g1*g2*t^8.95*y)/g3^15 + (t^8.95*y^2)/g3^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57284 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ 1.4577 1.6478 0.8847 [X:[1.3444], M:[0.9302, 0.9634], q:[0.4722, 0.5455], qb:[0.4912, 0.5243], phi:[0.3278]] t^2.791 + 2*t^2.89 + t^2.95 + t^2.989 + t^3.873 + t^3.973 + t^4.033 + t^4.093 + t^4.193 + t^4.857 + t^4.956 + t^5.077 + t^5.176 + t^5.453 + t^5.503 + t^5.581 + t^5.603 + t^5.673 + 2*t^5.681 + t^5.741 + 3*t^5.78 + 2*t^5.84 + 2*t^5.879 + t^5.94 + t^5.979 - 4*t^6. - t^3.983/y - t^4.967/y - t^3.983*y - t^4.967*y detail