Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57773 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{1}$ | 1.4781 | 1.6862 | 0.8766 | [X:[1.3439], M:[0.9357, 0.9673, 0.7047], q:[0.4756, 0.541], qb:[0.4917, 0.5233], phi:[0.3281]] | [X:[[0, 0, 2]], M:[[-1, -1, 0], [-1, -1, 6], [1, 1, -5]], q:[[-1, -2, 12], [1, 0, 0]], qb:[[0, 1, -6], [0, 1, 0]], phi:[[0, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{3}$, ${ }M_{1}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }X_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{3}^{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}^{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ | ${}$ | -4 | t^2.11 + t^2.81 + 2*t^2.9 + t^2.95 + t^3. + t^3.98 + t^4.03 + t^4.08 + t^4.18 + t^4.23 + t^4.87 + t^4.92 + t^4.96 + 2*t^5.02 + 2*t^5.07 + t^5.11 + t^5.16 + t^5.46 + t^5.5 + t^5.6 + t^5.61 + t^5.66 + 2*t^5.71 + t^5.76 + 3*t^5.8 + 2*t^5.85 + 2*t^5.9 + t^5.95 + t^5.99 - 4*t^6. + t^6.15 + t^6.29 + t^6.34 + t^6.45 + t^6.49 + t^6.58 + t^6.64 + t^6.84 + 2*t^6.88 + 3*t^6.93 + 3*t^6.98 + t^7.03 + 2*t^7.04 + 3*t^7.08 + 3*t^7.13 + t^7.17 + t^7.18 + t^7.22 + t^7.23 + t^7.28 + t^7.38 - t^7.42 + t^7.43 + t^7.47 - t^7.48 + t^7.57 + t^7.63 + t^7.66 + t^7.68 + t^7.71 + t^7.73 + 3*t^7.77 + 4*t^7.82 + 4*t^7.87 + 3*t^7.92 + 2*t^7.96 + 3*t^7.97 + 2*t^8.01 + t^8.02 + 4*t^8.06 - 2*t^8.11 + 2*t^8.16 + 2*t^8.26 + t^8.35 + t^8.36 + 3*t^8.41 + t^8.42 + 2*t^8.46 + 2*t^8.5 - t^8.51 + 2*t^8.52 + t^8.55 + t^8.56 + t^8.57 + 4*t^8.61 + t^8.65 + t^8.66 + 4*t^8.71 + 3*t^8.76 + 3*t^8.8 - 3*t^8.81 + 3*t^8.85 + 2*t^8.89 - 8*t^8.9 + t^8.95 + t^8.99 + t^8.95/y^2 - t^3.98/y - t^4.97/y - t^6.1/y - t^6.79/y - (2*t^6.89)/y - t^6.94/y - t^6.98/y - t^7.08/y - t^7.78/y - t^7.87/y - t^7.96/y + (2*t^8.02)/y + t^8.07/y + t^8.11/y - t^8.21/y + (2*t^8.71)/y + t^8.76/y + (2*t^8.8)/y + (2*t^8.85)/y + (2*t^8.9)/y - t^8.91/y - t^3.98*y - t^4.97*y - t^6.1*y - t^6.79*y - 2*t^6.89*y - t^6.94*y - t^6.98*y - t^7.08*y - t^7.78*y - t^7.87*y - t^7.96*y + 2*t^8.02*y + t^8.07*y + t^8.11*y - t^8.21*y + 2*t^8.71*y + t^8.76*y + 2*t^8.8*y + 2*t^8.85*y + 2*t^8.9*y - t^8.91*y + t^8.95*y^2 | (g1*g2*t^2.11)/g3^5 + t^2.81/(g1*g2) + (2*g3^6*t^2.9)/(g1*g2) + t^2.95/g3^3 + (g3^12*t^3.)/(g1*g2) + (g3^11*t^3.98)/(g1*g2) + g3^2*t^4.03 + (g1*g2*t^4.08)/g3^7 + (g1*g2*t^4.18)/g3 + (g1^2*g2^2*t^4.23)/g3^10 + (g3^4*t^4.87)/(g1*g2) + t^4.92/g3^5 + (g3^10*t^4.96)/(g1*g2) + 2*g3*t^5.02 + (2*g1*g2*t^5.07)/g3^8 + g3^7*t^5.11 + (g1*g2*t^5.16)/g3^2 + (g3^23*t^5.46)/(g1*g2^4) + (g2^3*t^5.5)/g3^13 + (g2^3*t^5.6)/g3^7 + t^5.61/(g1^2*g2^2) + (g1*g3^11*t^5.66)/g2^2 + (2*g3^6*t^5.71)/(g1^2*g2^2) + t^5.76/(g1*g2*g3^3) + (3*g3^12*t^5.8)/(g1^2*g2^2) + (2*g3^3*t^5.85)/(g1*g2) + (2*g3^18*t^5.9)/(g1^2*g2^2) + (g3^9*t^5.95)/(g1*g2) + (g3^24*t^5.99)/(g1^2*g2^2) - 4*t^6. + (g1*g2*t^6.15)/g3^3 + (g1^2*g2^2*t^6.29)/g3^6 + (g1^3*g2^3*t^6.34)/g3^15 + (g3^22*t^6.45)/(g1*g2^4) + (g2^3*t^6.49)/g3^14 + (g2^3*t^6.58)/g3^8 + (g1*g3^10*t^6.64)/g2^2 + (g3^2*t^6.84)/(g1*g2) + (2*g3^17*t^6.88)/(g1^2*g2^2) + (3*g3^8*t^6.93)/(g1*g2) + (2*t^6.98)/g3 + (g3^23*t^6.98)/(g1^2*g2^2) + (g3^14*t^7.03)/(g1*g2) + (2*g1*g2*t^7.04)/g3^10 + 3*g3^5*t^7.08 + (3*g1*g2*t^7.13)/g3^4 + g3^11*t^7.17 + (g1^2*g2^2*t^7.18)/g3^13 + g1*g2*g3^2*t^7.22 + (g3^33*t^7.23)/(g1^3*g2^6) + (g1^2*g2^2*t^7.28)/g3^7 + (g2^3*t^7.38)/g3^21 - (g2^2*t^7.42)/(g1*g3^6) + (g3^21*t^7.43)/(g1*g2^4) + (g2^3*t^7.47)/g3^15 - (g3^12*t^7.48)/g2^3 + (g2^3*t^7.57)/g3^9 + (g1*g3^9*t^7.63)/g2^2 + (g2^3*t^7.66)/g3^3 + (g3^4*t^7.68)/(g1^2*g2^2) + (g1*g2^4*t^7.71)/g3^12 + t^7.73/(g1*g2*g3^5) + (g1^2*g3^6*t^7.77)/g2 + (2*g3^10*t^7.77)/(g1^2*g2^2) + (g1^3*t^7.82)/g3^3 + (3*g3*t^7.82)/(g1*g2) + t^7.87/g3^8 + (3*g3^16*t^7.87)/(g1^2*g2^2) + (3*g3^7*t^7.92)/(g1*g2) + (2*g3^22*t^7.96)/(g1^2*g2^2) + (3*t^7.97)/g3^2 + (2*g3^13*t^8.01)/(g1*g2) + (g1*g2*t^8.02)/g3^11 + 4*g3^4*t^8.06 - (3*g1*g2*t^8.11)/g3^5 + (g3^19*t^8.11)/(g1*g2) + 2*g3^10*t^8.16 + (2*g1^2*g2^2*t^8.26)/g3^8 + (g1^2*g2^2*t^8.35)/g3^2 + (g3^29*t^8.36)/(g1^2*g2^5) + (g1^3*g2^3*t^8.41)/g3^11 + (g2^2*t^8.41)/(g1*g3^7) + (g3^20*t^8.41)/(g1*g2^4) + t^8.42/(g1^3*g2^3) + (g1^4*g2^4*t^8.46)/g3^20 + (g2^3*t^8.46)/g3^16 - (g3^11*t^8.46)/g2^3 + (g3^35*t^8.46)/(g1^2*g2^5) + (2*g2^2*t^8.5)/(g1*g3) - (g1*g2^4*t^8.51)/g3^25 + (2*g3^6*t^8.52)/(g1^3*g2^3) + (g2^3*t^8.55)/g3^10 + (g3^17*t^8.56)/g2^3 + t^8.57/(g1^2*g2^2*g3^3) - (g1*g2^4*t^8.6)/g3^19 + (g2^2*g3^5*t^8.6)/g1 + (g1*g3^8*t^8.61)/g2^2 + (3*g3^12*t^8.61)/(g1^3*g2^3) + (g3^23*t^8.65)/g2^3 - (g1^2*t^8.66)/(g2*g3) + (2*g3^3*t^8.66)/(g1^2*g2^2) + (4*g3^18*t^8.71)/(g1^3*g2^3) + (3*g3^9*t^8.76)/(g1^2*g2^2) + (3*g3^24*t^8.8)/(g1^3*g2^3) - (3*t^8.81)/(g1*g2) + (3*g3^15*t^8.85)/(g1^2*g2^2) + (2*g3^30*t^8.89)/(g1^3*g2^3) - (8*g3^6*t^8.9)/(g1*g2) - t^8.95/g3^3 + (2*g3^21*t^8.95)/(g1^2*g2^2) + (g3^36*t^8.99)/(g1^3*g2^3) + t^8.95/(g3^3*y^2) - t^3.98/(g3*y) - t^4.97/(g3^2*y) - (g1*g2*t^6.1)/(g3^6*y) - t^6.79/(g1*g2*g3*y) - (2*g3^5*t^6.89)/(g1*g2*y) - t^6.94/(g3^4*y) - (g3^11*t^6.98)/(g1*g2*y) - (g1*g2*t^7.08)/(g3^7*y) - t^7.78/(g1*g2*g3^2*y) - (g3^4*t^7.87)/(g1*g2*y) - (g3^10*t^7.96)/(g1*g2*y) + (2*g3*t^8.02)/y + (g1*g2*t^8.07)/(g3^8*y) + (g3^7*t^8.11)/y - (g1^2*g2^2*t^8.21)/(g3^11*y) + (2*g3^6*t^8.71)/(g1^2*g2^2*y) + t^8.76/(g1*g2*g3^3*y) + (2*g3^12*t^8.8)/(g1^2*g2^2*y) + (2*g3^3*t^8.85)/(g1*g2*y) + (2*g3^18*t^8.9)/(g1^2*g2^2*y) - t^8.91/(g3^6*y) - (t^3.98*y)/g3 - (t^4.97*y)/g3^2 - (g1*g2*t^6.1*y)/g3^6 - (t^6.79*y)/(g1*g2*g3) - (2*g3^5*t^6.89*y)/(g1*g2) - (t^6.94*y)/g3^4 - (g3^11*t^6.98*y)/(g1*g2) - (g1*g2*t^7.08*y)/g3^7 - (t^7.78*y)/(g1*g2*g3^2) - (g3^4*t^7.87*y)/(g1*g2) - (g3^10*t^7.96*y)/(g1*g2) + 2*g3*t^8.02*y + (g1*g2*t^8.07*y)/g3^8 + g3^7*t^8.11*y - (g1^2*g2^2*t^8.21*y)/g3^11 + (2*g3^6*t^8.71*y)/(g1^2*g2^2) + (t^8.76*y)/(g1*g2*g3^3) + (2*g3^12*t^8.8*y)/(g1^2*g2^2) + (2*g3^3*t^8.85*y)/(g1*g2) + (2*g3^18*t^8.9*y)/(g1^2*g2^2) - (t^8.91*y)/g3^6 + (t^8.95*y^2)/g3^3 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|
61097 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ | 1.4781 | 1.6861 | 0.8766 | [X:[1.3441], M:[0.9352, 0.9676, 0.7045], q:[0.4761, 0.5409], qb:[0.4915, 0.5239], phi:[0.3279]] | t^2.11 + t^2.81 + 2*t^2.9 + t^2.95 + t^3. + t^3.98 + t^4.03 + t^4.08 + t^4.18 + t^4.23 + t^4.87 + t^4.92 + t^4.97 + 2*t^5.02 + 2*t^5.06 + t^5.11 + t^5.16 + t^5.46 + t^5.5 + t^5.6 + t^5.61 + t^5.66 + 2*t^5.71 + t^5.76 + 3*t^5.81 + 2*t^5.85 + 2*t^5.9 + t^5.95 - 3*t^6. - t^3.98/y - t^4.97/y - t^3.98*y - t^4.97*y | detail |
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
57284 | SU3adj1nf2 | ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ | 1.4577 | 1.6478 | 0.8847 | [X:[1.3444], M:[0.9302, 0.9634], q:[0.4722, 0.5455], qb:[0.4912, 0.5243], phi:[0.3278]] | t^2.791 + 2*t^2.89 + t^2.95 + t^2.989 + t^3.873 + t^3.973 + t^4.033 + t^4.093 + t^4.193 + t^4.857 + t^4.956 + t^5.077 + t^5.176 + t^5.453 + t^5.503 + t^5.581 + t^5.603 + t^5.673 + 2*t^5.681 + t^5.741 + 3*t^5.78 + 2*t^5.84 + 2*t^5.879 + t^5.94 + t^5.979 - 4*t^6. - t^3.983/y - t^4.967/y - t^3.983*y - t^4.967*y | detail |