Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57772 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ 1.4603 1.649 0.8856 [X:[1.359], M:[0.9048, 0.9818, 0.9412], q:[0.5004, 0.5369], qb:[0.4814, 0.5583], phi:[0.3205]] [X:[[0, 0, 2]], M:[[-1, -1, 0], [-1, -1, 6], [1, 1, -12]], q:[[-1, -2, 12], [1, 0, 0]], qb:[[0, 1, -6], [0, 1, 0]], phi:[[0, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }M_{3}$, ${ }\phi_{1}^{3}$, ${ }M_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }X_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }M_{3}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{3}\phi_{1}^{3}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{6}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$ ${}$ -4 t^2.71 + t^2.82 + t^2.88 + 2*t^2.95 + t^3.91 + t^4.02 + t^4.08 + t^4.14 + t^4.25 + t^4.87 + t^4.98 + t^5.1 + t^5.21 + t^5.43 + t^5.52 + t^5.54 + t^5.57 + t^5.6 + t^5.65 + 2*t^5.66 + t^5.68 + t^5.71 + t^5.76 + 2*t^5.77 + 2*t^5.83 + 2*t^5.89 - 4*t^6. - t^6.11 - t^6.23 + t^6.49 + t^6.54 + t^6.62 + t^6.65 + t^6.72 + t^6.73 + 2*t^6.79 + t^6.84 + 2*t^6.85 + 2*t^6.9 + 2*t^6.96 + 3*t^7.02 + 2*t^7.08 + t^7.13 + t^7.19 + t^7.22 + t^7.39 - t^7.44 + t^7.45 + t^7.5 - t^7.51 + t^7.58 + t^7.61 - t^7.62 - t^7.67 + t^7.68 + t^7.69 + t^7.72 + t^7.75 + t^7.8 + 3*t^7.81 + t^7.86 + t^7.91 + 3*t^7.92 + t^7.98 + t^8.03 + 3*t^8.04 + t^8.09 + t^8.14 + 3*t^8.15 + t^8.25 + t^8.26 + t^8.28 + t^8.31 + t^8.36 + 2*t^8.37 + t^8.38 + t^8.41 + t^8.42 + t^8.46 + 2*t^8.47 + 2*t^8.48 + t^8.49 + t^8.52 + t^8.53 + 2*t^8.54 + t^8.57 - t^8.58 + 2*t^8.59 + 2*t^8.61 + t^8.64 + 2*t^8.65 + t^8.7 - t^8.71 - t^8.74 + 3*t^8.78 - t^8.81 - 4*t^8.82 + 2*t^8.84 - t^8.88 - t^8.93 - 8*t^8.95 + t^8.88/y^2 - t^3.96/y - t^4.92/y - t^6.68/y - t^6.79/y - t^6.85/y - (2*t^6.91)/y - t^7.64/y - t^7.75/y - t^7.81/y - (2*t^7.87)/y + t^8.54/y + t^8.6/y + (2*t^8.66)/y + t^8.71/y + (2*t^8.77)/y + t^8.83/y + t^8.89/y - t^8.94/y - t^3.96*y - t^4.92*y - t^6.68*y - t^6.79*y - t^6.85*y - 2*t^6.91*y - t^7.64*y - t^7.75*y - t^7.81*y - 2*t^7.87*y + t^8.54*y + t^8.6*y + 2*t^8.66*y + t^8.71*y + 2*t^8.77*y + t^8.83*y + t^8.89*y - t^8.94*y + t^8.88*y^2 t^2.71/(g1*g2) + (g1*g2*t^2.82)/g3^12 + t^2.88/g3^3 + (2*g3^6*t^2.95)/(g1*g2) + (g3^5*t^3.91)/(g1*g2) + (g1*g2*t^4.02)/g3^7 + g3^2*t^4.08 + (g3^11*t^4.14)/(g1*g2) + (g1*g2*t^4.25)/g3 + (g3^4*t^4.87)/(g1*g2) + (g1*g2*t^4.98)/g3^8 + (g3^10*t^5.1)/(g1*g2) + (g1*g2*t^5.21)/g3^2 + t^5.43/(g1^2*g2^2) + (g2^3*t^5.52)/g3^13 + t^5.54/g3^12 + (g3^23*t^5.57)/(g1*g2^4) + t^5.6/(g1*g2*g3^3) + (g1^2*g2^2*t^5.65)/g3^24 + (2*g3^6*t^5.66)/(g1^2*g2^2) + (g1*g3^11*t^5.68)/g2^2 + (g1*g2*t^5.71)/g3^15 + (g2^3*t^5.76)/g3^7 + (2*t^5.77)/g3^6 + (2*g3^3*t^5.83)/(g1*g2) + (2*g3^12*t^5.89)/(g1^2*g2^2) - 4*t^6. - (g1^2*g2^2*t^6.11)/g3^12 - g3^6*t^6.23 + (g2^3*t^6.49)/g3^14 + (g3^22*t^6.54)/(g1*g2^4) + (g3^5*t^6.62)/(g1^2*g2^2) + (g1*g3^10*t^6.65)/g2^2 + (g2^3*t^6.72)/g3^8 + t^6.73/g3^7 + (2*g3^2*t^6.79)/(g1*g2) + (g1^2*g2^2*t^6.84)/g3^19 + (2*g3^11*t^6.85)/(g1^2*g2^2) + (2*g1*g2*t^6.9)/g3^10 + (2*t^6.96)/g3 + (3*g3^8*t^7.02)/(g1*g2) + (2*g3^17*t^7.08)/(g1^2*g2^2) + (g1*g2*t^7.13)/g3^4 + g3^5*t^7.19 + (g2^3*t^7.22)/g3^21 + (g3^33*t^7.39)/(g1^3*g2^6) - (g3^12*t^7.44)/g2^3 + (g2^3*t^7.45)/g3^15 + (g3^21*t^7.5)/(g1*g2^4) - (g2^2*t^7.51)/(g1*g3^6) + (g3^4*t^7.58)/(g1^2*g2^2) + (g1*g3^9*t^7.61)/g2^2 - (g1*g2^4*t^7.62)/g3^18 - (g3^18*t^7.67)/g2^3 + (g2^3*t^7.68)/g3^9 + t^7.69/g3^8 + (g1^3*t^7.72)/g3^3 + (g3*t^7.75)/(g1*g2) + (g1^2*g2^2*t^7.8)/g3^20 + (3*g3^10*t^7.81)/(g1^2*g2^2) + (g1*g2*t^7.86)/g3^11 + (g2^3*t^7.91)/g3^3 + (3*t^7.92)/g3^2 + (g3^7*t^7.98)/(g1*g2) + (g1^2*g2^2*t^8.03)/g3^14 + (3*g3^16*t^8.04)/(g1^2*g2^2) + (g1*g2*t^8.09)/g3^5 + t^8.14/(g1^3*g2^3) + 3*g3^4*t^8.15 + t^8.25/(g1*g2*g3^12) + (g1^2*g2^2*t^8.26)/g3^8 + (g3^22*t^8.28)/(g1^2*g2^2) + t^8.31/(g1^2*g2^2*g3^3) + (g1*g2*t^8.36)/g3^24 + (2*g3^6*t^8.37)/(g1^3*g2^3) + g3^10*t^8.38 + (g2^3*t^8.41)/g3^16 + t^8.42/g3^15 + (g3^20*t^8.46)/(g1*g2^4) + (g1^3*g2^3*t^8.47)/g3^36 + (g2^2*t^8.47)/(g1*g3^7) + (2*t^8.48)/(g1*g2*g3^6) + (g1^2*g2^2*t^8.49)/g3^2 + (g3^29*t^8.52)/(g1^2*g2^5) + (g1^2*g2^2*t^8.53)/g3^27 + (2*g3^3*t^8.54)/(g1^2*g2^2) + (g1*g3^8*t^8.57)/g2^2 - (g1*g2^4*t^8.58)/g3^19 + (2*g1*g2*t^8.59)/g3^18 + (2*g3^12*t^8.61)/(g1^3*g2^3) + (g2^3*t^8.64)/g3^10 + (2*t^8.65)/g3^9 + (g2^2*t^8.7)/(g1*g3) - t^8.71/(g1*g2) - (g1^2*g3^5*t^8.74)/g2 + (3*g3^9*t^8.78)/(g1^2*g2^2) - (g1*g2^4*t^8.81)/g3^13 - (4*g1*g2*t^8.82)/g3^12 + (2*g3^18*t^8.84)/(g1^3*g2^3) - t^8.88/g3^3 - (g1^3*g2^3*t^8.93)/g3^24 - (8*g3^6*t^8.95)/(g1*g2) + t^8.88/(g3^3*y^2) - t^3.96/(g3*y) - t^4.92/(g3^2*y) - t^6.68/(g1*g2*g3*y) - (g1*g2*t^6.79)/(g3^13*y) - t^6.85/(g3^4*y) - (2*g3^5*t^6.91)/(g1*g2*y) - t^7.64/(g1*g2*g3^2*y) - (g1*g2*t^7.75)/(g3^14*y) - t^7.81/(g3^5*y) - (2*g3^4*t^7.87)/(g1*g2*y) + t^8.54/(g3^12*y) + t^8.6/(g1*g2*g3^3*y) + (2*g3^6*t^8.66)/(g1^2*g2^2*y) + (g1*g2*t^8.71)/(g3^15*y) + (2*t^8.77)/(g3^6*y) + (g3^3*t^8.83)/(g1*g2*y) + (g3^12*t^8.89)/(g1^2*g2^2*y) - (g1*g2*t^8.94)/(g3^9*y) - (t^3.96*y)/g3 - (t^4.92*y)/g3^2 - (t^6.68*y)/(g1*g2*g3) - (g1*g2*t^6.79*y)/g3^13 - (t^6.85*y)/g3^4 - (2*g3^5*t^6.91*y)/(g1*g2) - (t^7.64*y)/(g1*g2*g3^2) - (g1*g2*t^7.75*y)/g3^14 - (t^7.81*y)/g3^5 - (2*g3^4*t^7.87*y)/(g1*g2) + (t^8.54*y)/g3^12 + (t^8.6*y)/(g1*g2*g3^3) + (2*g3^6*t^8.66*y)/(g1^2*g2^2) + (g1*g2*t^8.71*y)/g3^15 + (2*t^8.77*y)/g3^6 + (g3^3*t^8.83*y)/(g1*g2) + (g3^12*t^8.89*y)/(g1^2*g2^2) - (g1*g2*t^8.94*y)/g3^9 + (t^8.88*y^2)/g3^3


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
57284 SU3adj1nf2 ${}q_{1}q_{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{2}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{1}$ 1.4577 1.6478 0.8847 [X:[1.3444], M:[0.9302, 0.9634], q:[0.4722, 0.5455], qb:[0.4912, 0.5243], phi:[0.3278]] t^2.791 + 2*t^2.89 + t^2.95 + t^2.989 + t^3.873 + t^3.973 + t^4.033 + t^4.093 + t^4.193 + t^4.857 + t^4.956 + t^5.077 + t^5.176 + t^5.453 + t^5.503 + t^5.581 + t^5.603 + t^5.673 + 2*t^5.681 + t^5.741 + 3*t^5.78 + 2*t^5.84 + 2*t^5.879 + t^5.94 + t^5.979 - 4*t^6. - t^3.983/y - t^4.967/y - t^3.983*y - t^4.967*y detail