Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57734 | SU3adj1nf2 | ${}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}^{2}q_{2}\tilde{q}_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{2}$ | 1.1513 | 1.3036 | 0.8832 | [X:[1.5263], M:[0.7106, 0.6952], q:[0.8944, 0.4053], qb:[0.8688, 0.4104], phi:[0.2369]] | [X:[[0, 0, 2]], M:[[0, 0, -3], [1, -1, -1]], q:[[-1, 0, 1], [0, -1, 5]], qb:[[1, 0, 0], [0, 1, 0]], phi:[[0, 0, -1]]] | 3 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }M_{1}$, ${ }\phi_{1}^{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{2}\phi_{1}^{3}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}^{6}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }X_{1}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{4}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}^{3}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$ | ${}$ | -3 | t^2.09 + 2*t^2.13 + t^2.45 + t^3.16 + t^3.82 + t^4.17 + 2*t^4.22 + 3*t^4.26 + t^4.53 + 3*t^4.58 + t^4.89 + t^5.24 + 3*t^5.29 + t^5.61 + 2*t^5.78 + 2*t^5.83 + t^5.91 + t^5.95 - 3*t^6. - t^6.05 + t^6.26 + t^6.27 + 2*t^6.3 + t^6.32 + 3*t^6.35 + 4*t^6.39 + t^6.62 + 3*t^6.66 + 4*t^6.71 + 2*t^6.98 + 3*t^7.03 + t^7.33 + t^7.34 + 2*t^7.38 + 4*t^7.42 - t^7.47 + t^7.64 + t^7.69 + 3*t^7.74 + 2*t^7.87 + 4*t^7.91 + 2*t^7.96 + t^7.99 + t^8.04 + t^8.05 - 2*t^8.09 - 5*t^8.13 - 2*t^8.18 + 2*t^8.23 + 2*t^8.27 + t^8.34 + t^8.36 + 2*t^8.39 + 3*t^8.4 + 3*t^8.43 - t^8.45 + 4*t^8.48 - t^8.49 + 5*t^8.53 - 2*t^8.62 - 2*t^8.67 + t^8.7 + t^8.72 + 3*t^8.75 + t^8.76 + 2*t^8.8 + 2*t^8.84 + 2*t^8.94 + 2*t^8.98 + t^8.13/y^2 - t^8.8/y^2 - (2*t^8.84)/y^2 - t^3.71/y - t^4.42/y - t^5.8/y - (2*t^5.84)/y - t^6.16/y - t^6.51/y - (2*t^6.55)/y - t^6.87/y + (2*t^7.22)/y + t^7.26/y + (2*t^7.58)/y - t^7.88/y - (2*t^7.93)/y - (3*t^7.97)/y + t^8.29/y + t^8.34/y - t^8.59/y - (2*t^8.64)/y - (3*t^8.68)/y + t^8.91/y + t^8.95/y - t^3.71*y - t^4.42*y - t^5.8*y - 2*t^5.84*y - t^6.16*y - t^6.51*y - 2*t^6.55*y - t^6.87*y + 2*t^7.22*y + t^7.26*y + 2*t^7.58*y - t^7.88*y - 2*t^7.93*y - 3*t^7.97*y + t^8.29*y + t^8.34*y - t^8.59*y - 2*t^8.64*y - 3*t^8.68*y + t^8.91*y + t^8.95*y + t^8.13*y^2 - t^8.8*y^2 - 2*t^8.84*y^2 | (g1*t^2.09)/(g2*g3) + (2*t^2.13)/g3^3 + g3^5*t^2.45 + g3^4*t^3.16 + (g1*g3^5*t^3.82)/g2 + (g1^2*t^4.17)/(g2^2*g3^2) + (2*g1*t^4.22)/(g2*g3^4) + (3*t^4.26)/g3^6 + (g1*g3^4*t^4.53)/g2 + 3*g3^2*t^4.58 + g3^10*t^4.89 + (g1*g3^3*t^5.24)/g2 + 3*g3*t^5.29 + g3^9*t^5.61 + (g1*g2^2*t^5.78)/g3 + (g3^12*t^5.78)/g2^3 + (g2^3*t^5.83)/g3^3 + (g3^10*t^5.83)/(g1*g2^2) + (g1^2*g3^4*t^5.91)/g2^2 + (g1*g3^2*t^5.95)/g2 - 3*t^6. - (g2*t^6.05)/(g1*g3^2) + (g1^3*t^6.26)/(g2^3*g3^3) + (g1*g3^10*t^6.27)/g2 + (2*g1^2*t^6.3)/(g2^2*g3^5) + g3^8*t^6.32 + (3*g1*t^6.35)/(g2*g3^7) + (4*t^6.39)/g3^9 + (g1^2*g3^3*t^6.62)/g2^2 + (3*g1*g3*t^6.66)/g2 + (4*t^6.71)/g3 + (2*g1*g3^9*t^6.98)/g2 + 3*g3^7*t^7.03 + (g1^2*g3^2*t^7.33)/g2^2 + g3^15*t^7.34 + (2*g1*t^7.38)/g2 + (4*t^7.42)/g3^2 - (g2*t^7.47)/(g1*g3^4) + (g1^2*g3^10*t^7.64)/g2^2 + (g1*g3^8*t^7.69)/g2 + 3*g3^6*t^7.74 + (g1^2*g2*t^7.87)/g3^2 + (g1*g3^11*t^7.87)/g2^4 + (2*g1*g2^2*t^7.91)/g3^4 + (2*g3^9*t^7.91)/g2^3 + (g2^3*t^7.96)/g3^6 + (g3^7*t^7.96)/(g1*g2^2) + (g1^3*g3^3*t^7.99)/g2^3 + (g1^2*g3*t^8.04)/g2^2 + g3^14*t^8.05 - (2*g1*t^8.09)/(g2*g3) - (5*t^8.13)/g3^3 - (2*g2*t^8.18)/(g1*g3^5) + g1*g2^2*g3^4*t^8.23 + (g3^17*t^8.23)/g2^3 + g2^3*g3^2*t^8.27 + (g3^15*t^8.27)/(g1*g2^2) + (g1^4*t^8.34)/(g2^4*g3^4) + (g1^2*g3^9*t^8.36)/g2^2 + (2*g1^3*t^8.39)/(g2^3*g3^6) + (3*g1*g3^7*t^8.4)/g2 + (3*g1^2*t^8.43)/(g2^2*g3^8) - g3^5*t^8.45 + (4*g1*t^8.48)/(g2*g3^10) - (g2*g3^3*t^8.49)/g1 + (5*t^8.53)/g3^12 - (g1*g2^2*t^8.62)/g3^5 - (g3^8*t^8.62)/g2^3 - (g2^3*t^8.67)/g3^7 - (g3^6*t^8.67)/(g1*g2^2) + (g1^3*g3^2*t^8.7)/g2^3 + (g1*g3^15*t^8.72)/g2 + (3*g1^2*t^8.75)/g2^2 + g3^13*t^8.76 + (2*g1*t^8.8)/(g2*g3^2) + (2*t^8.84)/g3^4 + g1*g2^2*g3^3*t^8.94 + (g3^16*t^8.94)/g2^3 + g2^3*g3*t^8.98 + (g3^14*t^8.98)/(g1*g2^2) + t^8.13/(g3^3*y^2) - (g1*t^8.8)/(g2*g3^2*y^2) - (2*t^8.84)/(g3^4*y^2) - t^3.71/(g3*y) - t^4.42/(g3^2*y) - (g1*t^5.8)/(g2*g3^2*y) - (2*t^5.84)/(g3^4*y) - (g3^4*t^6.16)/y - (g1*t^6.51)/(g2*g3^3*y) - (2*t^6.55)/(g3^5*y) - (g3^3*t^6.87)/y + (2*g1*t^7.22)/(g2*g3^4*y) + t^7.26/(g3^6*y) + (2*g3^2*t^7.58)/y - (g1^2*t^7.88)/(g2^2*g3^3*y) - (2*g1*t^7.93)/(g2*g3^5*y) - (3*t^7.97)/(g3^7*y) + (g3*t^8.29)/y + (g2*t^8.34)/(g1*g3*y) - (g1^2*t^8.59)/(g2^2*g3^4*y) - (2*g1*t^8.64)/(g2*g3^6*y) - (3*t^8.68)/(g3^8*y) + (g1^2*g3^4*t^8.91)/(g2^2*y) + (g1*g3^2*t^8.95)/(g2*y) - (t^3.71*y)/g3 - (t^4.42*y)/g3^2 - (g1*t^5.8*y)/(g2*g3^2) - (2*t^5.84*y)/g3^4 - g3^4*t^6.16*y - (g1*t^6.51*y)/(g2*g3^3) - (2*t^6.55*y)/g3^5 - g3^3*t^6.87*y + (2*g1*t^7.22*y)/(g2*g3^4) + (t^7.26*y)/g3^6 + 2*g3^2*t^7.58*y - (g1^2*t^7.88*y)/(g2^2*g3^3) - (2*g1*t^7.93*y)/(g2*g3^5) - (3*t^7.97*y)/g3^7 + g3*t^8.29*y + (g2*t^8.34*y)/(g1*g3) - (g1^2*t^8.59*y)/(g2^2*g3^4) - (2*g1*t^8.64*y)/(g2*g3^6) - (3*t^8.68*y)/g3^8 + (g1^2*g3^4*t^8.91*y)/g2^2 + (g1*g3^2*t^8.95*y)/g2 + (t^8.13*y^2)/g3^3 - (g1*t^8.8*y^2)/(g2*g3^2) - (2*t^8.84*y^2)/g3^4 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47952 | SU3adj1nf2 | ${}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }\phi_{1}^{2}X_{1}$ + ${ }M_{1}\phi_{1}^{2}q_{2}\tilde{q}_{2}$ | 1.1309 | 1.2646 | 0.8942 | [X:[1.5244], M:[0.7134], q:[0.8811, 0.4055], qb:[0.8811, 0.4055], phi:[0.2378]] | 2*t^2.14 + t^2.433 + t^3.146 + 2*t^3.86 + 3*t^4.28 + 3*t^4.573 + t^4.866 + 3*t^5.287 + t^5.579 + 4*t^5.79 - t^6. - t^3.713/y - t^4.427/y - (2*t^5.854)/y - t^3.713*y - t^4.427*y - 2*t^5.854*y | detail |