Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
57685 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\phi_{1}^{3}$ | 1.5181 | 1.7745 | 0.8555 | [X:[], M:[0.6897, 0.6897, 0.9655], q:[0.4828, 0.4828], qb:[0.4828, 0.4828], phi:[0.3448]] | [X:[], M:[[-5, 1, -5, 1], [1, -5, 1, -5], [3, 3, 3, 3]], q:[[6, 0, 0, 0], [0, 6, 0, 0]], qb:[[0, 0, 6, 0], [0, 0, 0, 6]], phi:[[-1, -1, -1, -1]]] | 4 | {a: 20427/13456, c: 11939/6728, M1: 20/29, M2: 20/29, M3: 28/29, q1: 14/29, q2: 14/29, qb1: 14/29, qb2: 14/29, phi1: 10/29} |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}M_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{3}$, ${ }q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{1}M_{3}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}q_{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$ | ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ | -2 | 3*t^2.07 + 5*t^2.9 + 2*t^3.93 + 6*t^4.14 + 19*t^4.97 + 4*t^5.38 + 15*t^5.79 - 2*t^6. + 10*t^6.21 + 4*t^6.41 + 10*t^6.83 + 35*t^7.03 + 16*t^7.45 + 63*t^7.86 - 18*t^8.07 + 35*t^8.28 - 4*t^8.48 + 35*t^8.69 - 7*t^8.9 - t^4.03/y - t^5.07/y - (3*t^6.1)/y - (5*t^6.93)/y + (13*t^7.97)/y - (6*t^8.17)/y + (10*t^8.79)/y - t^4.03*y - t^5.07*y - 3*t^6.1*y - 5*t^6.93*y + 13*t^7.97*y - 6*t^8.17*y + 10*t^8.79*y | (g1*g3*t^2.07)/(g2^5*g4^5) + t^2.07/(g1^2*g2^2*g3^2*g4^2) + (g2*g4*t^2.07)/(g1^5*g3^5) + g1^6*g3^6*t^2.9 + g2^6*g3^6*t^2.9 + g1^3*g2^3*g3^3*g4^3*t^2.9 + g1^6*g4^6*t^2.9 + g2^6*g4^6*t^2.9 + (g2^5*g3^5*t^3.93)/(g1*g4) + (g1^5*g4^5*t^3.93)/(g2*g3) + (g1^2*g3^2*t^4.14)/(g2^10*g4^10) + t^4.14/(g1*g2^7*g3*g4^7) + (2*t^4.14)/(g1^4*g2^4*g3^4*g4^4) + t^4.14/(g1^7*g2*g3^7*g4) + (g2^2*g4^2*t^4.14)/(g1^10*g3^10) + (g1^7*g3^7*t^4.97)/(g2^5*g4^5) + (g1*g2*g3^7*t^4.97)/g4^5 + (3*g1^4*g3^4*t^4.97)/(g2^2*g4^2) + (2*g2^4*g3^4*t^4.97)/(g1^2*g4^2) + (g1^7*g3*g4*t^4.97)/g2^5 + 3*g1*g2*g3*g4*t^4.97 + (g2^7*g3*g4*t^4.97)/g1^5 + (2*g1^4*g4^4*t^4.97)/(g2^2*g3^2) + (3*g2^4*g4^4*t^4.97)/(g1^2*g3^2) + (g1*g2*g4^7*t^4.97)/g3^5 + (g2^7*g4^7*t^4.97)/(g1^5*g3^5) + (g1^11*g2^5*t^5.38)/(g3*g4) + (g1^5*g2^11*t^5.38)/(g3*g4) + (g3^11*g4^5*t^5.38)/(g1*g2) + (g3^5*g4^11*t^5.38)/(g1*g2) + g1^12*g3^12*t^5.79 + g1^6*g2^6*g3^12*t^5.79 + g2^12*g3^12*t^5.79 + g1^9*g2^3*g3^9*g4^3*t^5.79 + g1^3*g2^9*g3^9*g4^3*t^5.79 + g1^12*g3^6*g4^6*t^5.79 + 3*g1^6*g2^6*g3^6*g4^6*t^5.79 + g2^12*g3^6*g4^6*t^5.79 + g1^9*g2^3*g3^3*g4^9*t^5.79 + g1^3*g2^9*g3^3*g4^9*t^5.79 + g1^12*g4^12*t^5.79 + g1^6*g2^6*g4^12*t^5.79 + g2^12*g4^12*t^5.79 - 4*t^6. + (g2^3*g3^3*t^6.)/(g1^3*g4^3) + (g1^3*g4^3*t^6.)/(g2^3*g3^3) + t^6.21/(g1^12*g3^12) + (g1^3*g3^3*t^6.21)/(g2^15*g4^15) + t^6.21/(g2^12*g4^12) + (2*t^6.21)/(g1^3*g2^9*g3^3*g4^9) + (2*t^6.21)/(g1^6*g2^6*g3^6*g4^6) + (2*t^6.21)/(g1^9*g2^3*g3^9*g4^3) + (g2^3*g4^3*t^6.21)/(g1^15*g3^15) + (g1^10*g2^4*t^6.41)/(g3^2*g4^2) + (g1^4*g2^10*t^6.41)/(g3^2*g4^2) + (g3^10*g4^4*t^6.41)/(g1^2*g2^2) + (g3^4*g4^10*t^6.41)/(g1^2*g2^2) + (g1^5*g2^5*g3^11*t^6.83)/g4 + (g2^11*g3^11*t^6.83)/(g1*g4) + g1^2*g2^8*g3^8*g4^2*t^6.83 + (g1^11*g3^5*g4^5*t^6.83)/g2 + 2*g1^5*g2^5*g3^5*g4^5*t^6.83 + (g2^11*g3^5*g4^5*t^6.83)/g1 + g1^8*g2^2*g3^2*g4^8*t^6.83 + (g1^11*g4^11*t^6.83)/(g2*g3) + (g1^5*g2^5*g4^11*t^6.83)/g3 + (g1^8*g3^8*t^7.03)/(g2^10*g4^10) + (g1^2*g3^8*t^7.03)/(g2^4*g4^10) + (3*g1^5*g3^5*t^7.03)/(g2^7*g4^7) + (g3^5*t^7.03)/(g1*g2*g4^7) + (g1^8*g3^2*t^7.03)/(g2^10*g4^4) + (5*g1^2*g3^2*t^7.03)/(g2^4*g4^4) + (3*g2^2*g3^2*t^7.03)/(g1^4*g4^4) + (g1^5*t^7.03)/(g2^7*g3*g4) + (3*t^7.03)/(g1*g2*g3*g4) + (g2^5*t^7.03)/(g1^7*g3*g4) + (3*g1^2*g4^2*t^7.03)/(g2^4*g3^4) + (5*g2^2*g4^2*t^7.03)/(g1^4*g3^4) + (g2^8*g4^2*t^7.03)/(g1^10*g3^4) + (g4^5*t^7.03)/(g1*g2*g3^7) + (3*g2^5*g4^5*t^7.03)/(g1^7*g3^7) + (g2^2*g4^8*t^7.03)/(g1^4*g3^10) + (g2^8*g4^8*t^7.03)/(g1^10*g3^10) + (g2^12*t^7.45)/g3^6 + (g3^12*t^7.45)/g2^6 + (g1^12*t^7.45)/g4^6 + (g1^15*t^7.45)/(g2^3*g3^3*g4^3) + (2*g1^9*g2^3*t^7.45)/(g3^3*g4^3) + (2*g1^3*g2^9*t^7.45)/(g3^3*g4^3) + (g2^15*t^7.45)/(g1^3*g3^3*g4^3) + (g3^15*t^7.45)/(g1^3*g2^3*g4^3) + (2*g3^9*g4^3*t^7.45)/(g1^3*g2^3) + (2*g3^3*g4^9*t^7.45)/(g1^3*g2^3) + (g4^12*t^7.45)/g1^6 + (g4^15*t^7.45)/(g1^3*g2^3*g3^3) + (g1^13*g3^13*t^7.86)/(g2^5*g4^5) + (g1^7*g2*g3^13*t^7.86)/g4^5 + (g1*g2^7*g3^13*t^7.86)/g4^5 + (3*g1^10*g3^10*t^7.86)/(g2^2*g4^2) + (4*g1^4*g2^4*g3^10*t^7.86)/g4^2 + (3*g2^10*g3^10*t^7.86)/(g1^2*g4^2) + (g1^13*g3^7*g4*t^7.86)/g2^5 + 5*g1^7*g2*g3^7*g4*t^7.86 + 3*g1*g2^7*g3^7*g4*t^7.86 + (g2^13*g3^7*g4*t^7.86)/g1^5 + (4*g1^10*g3^4*g4^4*t^7.86)/g2^2 + 9*g1^4*g2^4*g3^4*g4^4*t^7.86 + (4*g2^10*g3^4*g4^4*t^7.86)/g1^2 + (g1^13*g3*g4^7*t^7.86)/g2^5 + 3*g1^7*g2*g3*g4^7*t^7.86 + 5*g1*g2^7*g3*g4^7*t^7.86 + (g2^13*g3*g4^7*t^7.86)/g1^5 + (3*g1^10*g4^10*t^7.86)/(g2^2*g3^2) + (4*g1^4*g2^4*g4^10*t^7.86)/g3^2 + (3*g2^10*g4^10*t^7.86)/(g1^2*g3^2) + (g1^7*g2*g4^13*t^7.86)/g3^5 + (g1*g2^7*g4^13*t^7.86)/g3^5 + (g2^13*g4^13*t^7.86)/(g1^5*g3^5) - (g3^4*t^8.07)/(g1^2*g2^2*g4^8) - (4*g1*g3*t^8.07)/(g2^5*g4^5) - (g1^4*t^8.07)/(g2^8*g3^2*g4^2) - (6*t^8.07)/(g1^2*g2^2*g3^2*g4^2) - (g2^4*t^8.07)/(g1^8*g3^2*g4^2) - (4*g2*g4*t^8.07)/(g1^5*g3^5) - (g4^4*t^8.07)/(g1^2*g2^2*g3^8) + (g1^4*g3^4*t^8.28)/(g2^20*g4^20) + (g1*g3*t^8.28)/(g2^17*g4^17) + (2*t^8.28)/(g1^2*g2^14*g3^2*g4^14) + (2*t^8.28)/(g1^5*g2^11*g3^5*g4^11) + (3*t^8.28)/(g1^8*g2^8*g3^8*g4^8) + (2*t^8.28)/(g1^11*g2^5*g3^11*g4^5) + (2*t^8.28)/(g1^14*g2^2*g3^14*g4^2) + (g1^17*g2^5*g3^5*t^8.28)/g4 + (2*g1^11*g2^11*g3^5*t^8.28)/g4 + (g1^5*g2^17*g3^5*t^8.28)/g4 + (g2*g4*t^8.28)/(g1^17*g3^17) + g1^14*g2^8*g3^2*g4^2*t^8.28 + g1^8*g2^14*g3^2*g4^2*t^8.28 + (g2^4*g4^4*t^8.28)/(g1^20*g3^20) + (g1^17*g2^5*g4^5*t^8.28)/g3 + (2*g1^11*g2^11*g4^5*t^8.28)/g3 + (g1^5*g2^17*g4^5*t^8.28)/g3 + (g1^5*g3^17*g4^5*t^8.28)/g2 + (g2^5*g3^17*g4^5*t^8.28)/g1 + g1^2*g2^2*g3^14*g4^8*t^8.28 + (2*g1^5*g3^11*g4^11*t^8.28)/g2 + (2*g2^5*g3^11*g4^11*t^8.28)/g1 + g1^2*g2^2*g3^8*g4^14*t^8.28 + (g1^5*g3^5*g4^17*t^8.28)/g2 + (g2^5*g3^5*g4^17*t^8.28)/g1 - (g1^5*g2^5*t^8.48)/(g3*g4^7) - (g2^11*t^8.48)/(g1*g3*g4^7) + (g1^8*g2^2*t^8.48)/(g3^4*g4^4) + (g1^2*g2^8*t^8.48)/(g3^4*g4^4) - (g1^11*t^8.48)/(g2*g3^7*g4) - (g1^5*g2^5*t^8.48)/(g3^7*g4) - (g3^11*t^8.48)/(g1^7*g2*g4) + (g3^8*g4^2*t^8.48)/(g1^4*g2^4) - (g3^5*g4^5*t^8.48)/(g1*g2^7) - (g3^5*g4^5*t^8.48)/(g1^7*g2) + (g3^2*g4^8*t^8.48)/(g1^4*g2^4) - (g4^11*t^8.48)/(g1*g2^7*g3) + g1^18*g3^18*t^8.69 + g1^12*g2^6*g3^18*t^8.69 + g1^6*g2^12*g3^18*t^8.69 + g2^18*g3^18*t^8.69 + g1^15*g2^3*g3^15*g4^3*t^8.69 + g1^9*g2^9*g3^15*g4^3*t^8.69 + g1^3*g2^15*g3^15*g4^3*t^8.69 + g1^18*g3^12*g4^6*t^8.69 + 3*g1^12*g2^6*g3^12*g4^6*t^8.69 + 3*g1^6*g2^12*g3^12*g4^6*t^8.69 + g2^18*g3^12*g4^6*t^8.69 + g1^15*g2^3*g3^9*g4^9*t^8.69 + 3*g1^9*g2^9*g3^9*g4^9*t^8.69 + g1^3*g2^15*g3^9*g4^9*t^8.69 + g1^18*g3^6*g4^12*t^8.69 + 3*g1^12*g2^6*g3^6*g4^12*t^8.69 + 3*g1^6*g2^12*g3^6*g4^12*t^8.69 + g2^18*g3^6*g4^12*t^8.69 + g1^15*g2^3*g3^3*g4^15*t^8.69 + g1^9*g2^9*g3^3*g4^15*t^8.69 + g1^3*g2^15*g3^3*g4^15*t^8.69 + g1^18*g4^18*t^8.69 + g1^12*g2^6*g4^18*t^8.69 + g1^6*g2^12*g4^18*t^8.69 + g2^18*g4^18*t^8.69 - 5*g1^6*g3^6*t^8.9 - 4*g2^6*g3^6*t^8.9 + (2*g1^3*g2^3*g3^9*t^8.9)/g4^3 + (2*g2^9*g3^9*t^8.9)/(g1^3*g4^3) + (2*g1^9*g3^3*g4^3*t^8.9)/g2^3 - g1^3*g2^3*g3^3*g4^3*t^8.9 + (2*g2^9*g3^3*g4^3*t^8.9)/g1^3 - 4*g1^6*g4^6*t^8.9 - 5*g2^6*g4^6*t^8.9 + (2*g1^9*g4^9*t^8.9)/(g2^3*g3^3) + (2*g1^3*g2^3*g4^9*t^8.9)/g3^3 - t^4.03/(g1*g2*g3*g4*y) - t^5.07/(g1^2*g2^2*g3^2*g4^2*y) - t^6.1/(g1^6*g3^6*y) - t^6.1/(g2^6*g4^6*y) - t^6.1/(g1^3*g2^3*g3^3*g4^3*y) - (g1^5*g3^5*t^6.93)/(g2*g4*y) - (g2^5*g3^5*t^6.93)/(g1*g4*y) - (g1^2*g2^2*g3^2*g4^2*t^6.93)/y - (g1^5*g4^5*t^6.93)/(g2*g3*y) - (g2^5*g4^5*t^6.93)/(g1*g3*y) + (g1^7*g3^7*t^7.97)/(g2^5*g4^5*y) + (g1*g2*g3^7*t^7.97)/(g4^5*y) + (2*g1^4*g3^4*t^7.97)/(g2^2*g4^2*y) + (g1^7*g3*g4*t^7.97)/(g2^5*y) + (3*g1*g2*g3*g4*t^7.97)/y + (g2^7*g3*g4*t^7.97)/(g1^5*y) + (2*g2^4*g4^4*t^7.97)/(g1^2*g3^2*y) + (g1*g2*g4^7*t^7.97)/(g3^5*y) + (g2^7*g4^7*t^7.97)/(g1^5*g3^5*y) - (g1*g3*t^8.17)/(g2^11*g4^11*y) - t^8.17/(g1^2*g2^8*g3^2*g4^8*y) - (2*t^8.17)/(g1^5*g2^5*g3^5*g4^5*y) - t^8.17/(g1^8*g2^2*g3^8*g4^2*y) - (g2*g4*t^8.17)/(g1^11*g3^11*y) + (g1^6*g2^6*g3^12*t^8.79)/y + (g1^9*g2^3*g3^9*g4^3*t^8.79)/y + (g1^3*g2^9*g3^9*g4^3*t^8.79)/y + (g1^12*g3^6*g4^6*t^8.79)/y + (2*g1^6*g2^6*g3^6*g4^6*t^8.79)/y + (g2^12*g3^6*g4^6*t^8.79)/y + (g1^9*g2^3*g3^3*g4^9*t^8.79)/y + (g1^3*g2^9*g3^3*g4^9*t^8.79)/y + (g1^6*g2^6*g4^12*t^8.79)/y - (t^4.03*y)/(g1*g2*g3*g4) - (t^5.07*y)/(g1^2*g2^2*g3^2*g4^2) - (t^6.1*y)/(g1^6*g3^6) - (t^6.1*y)/(g2^6*g4^6) - (t^6.1*y)/(g1^3*g2^3*g3^3*g4^3) - (g1^5*g3^5*t^6.93*y)/(g2*g4) - (g2^5*g3^5*t^6.93*y)/(g1*g4) - g1^2*g2^2*g3^2*g4^2*t^6.93*y - (g1^5*g4^5*t^6.93*y)/(g2*g3) - (g2^5*g4^5*t^6.93*y)/(g1*g3) + (g1^7*g3^7*t^7.97*y)/(g2^5*g4^5) + (g1*g2*g3^7*t^7.97*y)/g4^5 + (2*g1^4*g3^4*t^7.97*y)/(g2^2*g4^2) + (g1^7*g3*g4*t^7.97*y)/g2^5 + 3*g1*g2*g3*g4*t^7.97*y + (g2^7*g3*g4*t^7.97*y)/g1^5 + (2*g2^4*g4^4*t^7.97*y)/(g1^2*g3^2) + (g1*g2*g4^7*t^7.97*y)/g3^5 + (g2^7*g4^7*t^7.97*y)/(g1^5*g3^5) - (g1*g3*t^8.17*y)/(g2^11*g4^11) - (t^8.17*y)/(g1^2*g2^8*g3^2*g4^8) - (2*t^8.17*y)/(g1^5*g2^5*g3^5*g4^5) - (t^8.17*y)/(g1^8*g2^2*g3^8*g4^2) - (g2*g4*t^8.17*y)/(g1^11*g3^11) + g1^6*g2^6*g3^12*t^8.79*y + g1^9*g2^3*g3^9*g4^3*t^8.79*y + g1^3*g2^9*g3^9*g4^3*t^8.79*y + g1^12*g3^6*g4^6*t^8.79*y + 2*g1^6*g2^6*g3^6*g4^6*t^8.79*y + g2^12*g3^6*g4^6*t^8.79*y + g1^9*g2^3*g3^3*g4^9*t^8.79*y + g1^3*g2^9*g3^3*g4^9*t^8.79*y + g1^6*g2^6*g4^12*t^8.79*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
47919 | SU3adj1nf2 | ${}M_{1}\phi_{1}q_{1}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$ | 1.5159 | 1.7673 | 0.8577 | [M:[0.6744, 0.6744], q:[0.4942, 0.4942], qb:[0.4942, 0.4942], phi:[0.3372]] | 3*t^2.023 + 4*t^2.965 + t^3.035 + 2*t^3.977 + 6*t^4.046 + 16*t^4.988 + 3*t^5.058 + 4*t^5.459 + 10*t^5.93 + 2*t^6. - t^4.012/y - t^5.023/y - t^4.012*y - t^5.023*y | detail |