Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
5759 | SU2adj1nf2 | $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2q_2\tilde{q}_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_1^2$ + $ M_4q_1q_2$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_3M_6$ + $ M_7\phi_1\tilde{q}_2^2$ + $ M_5M_8$ + $ M_2M_9$ | 0.679 | 0.8492 | 0.7995 | [X:[], M:[1.0, 1.1727, 0.9666, 0.8273, 0.7242, 1.0334, 0.6908, 1.2758, 0.8273], q:[0.7758, 0.3969], qb:[0.6031, 0.4304], phi:[0.4485]] | [X:[], M:[[0], [-3], [-11], [3], [-1], [11], [-12], [1], [3]], q:[[1], [-4]], qb:[[4], [7]], phi:[[-2]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
$M_7$, $ M_4$, $ M_9$, $ \phi_1^2$, $ M_1$, $ M_6$, $ q_1\tilde{q}_2$, $ \phi_1q_2^2$, $ M_8$, $ M_7^2$, $ q_1\tilde{q}_1$, $ \phi_1q_2\tilde{q}_1$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_4M_7$, $ M_7M_9$, $ M_7\phi_1^2$, $ M_4^2$, $ M_4M_9$, $ M_9^2$, $ \phi_1\tilde{q}_1^2$, $ M_1M_7$, $ M_6M_7$, $ M_4\phi_1^2$, $ M_9\phi_1^2$, $ M_1M_4$, $ M_1M_9$, $ M_4M_6$, $ M_6M_9$, $ M_1\phi_1^2$, $ M_7q_1\tilde{q}_2$, $ M_6\phi_1^2$, $ M_7\phi_1q_2^2$ | . | -2 | t^2.07 + 2*t^2.48 + t^2.69 + t^3. + t^3.1 + t^3.62 + t^3.73 + t^3.83 + 2*t^4.14 + t^4.35 + t^4.45 + 2*t^4.55 + t^4.76 + 4*t^4.96 + t^5.07 + 3*t^5.17 + t^5.48 + 2*t^5.58 + 2*t^5.69 + t^5.79 + t^5.8 - 2*t^6. + 2*t^6.1 + t^6.2 + 2*t^6.21 + t^6.22 + 2*t^6.31 + 2*t^6.42 + t^6.62 + 2*t^6.63 + t^6.72 + 2*t^6.83 + t^6.84 + 2*t^6.93 + 3*t^7.04 + t^7.14 + t^7.24 + 2*t^7.25 - t^7.35 + 7*t^7.45 + 3*t^7.55 + 5*t^7.65 + 2*t^7.76 + t^7.87 + t^7.96 + 4*t^8.06 - t^8.07 + 3*t^8.17 + 2*t^8.27 + 2*t^8.28 + t^8.29 + t^8.38 - 5*t^8.48 + 2*t^8.49 + 3*t^8.58 - t^8.59 + 2*t^8.68 + t^8.69 + 2*t^8.7 + 4*t^8.79 + t^8.89 + 3*t^8.9 + t^8.91 - t^4.35/y - t^6.42/y - t^6.83/y - t^7.04/y + (2*t^7.55)/y + t^7.65/y + t^7.76/y + t^7.86/y + t^7.96/y + t^8.07/y + (3*t^8.17)/y + t^8.27/y + (2*t^8.48)/y - t^8.49/y + (2*t^8.58)/y + (2*t^8.69)/y + t^8.79/y + t^8.8/y - t^4.35*y - t^6.42*y - t^6.83*y - t^7.04*y + 2*t^7.55*y + t^7.65*y + t^7.76*y + t^7.86*y + t^7.96*y + t^8.07*y + 3*t^8.17*y + t^8.27*y + 2*t^8.48*y - t^8.49*y + 2*t^8.58*y + 2*t^8.69*y + t^8.79*y + t^8.8*y | t^2.07/g1^12 + 2*g1^3*t^2.48 + t^2.69/g1^4 + t^3. + g1^11*t^3.1 + g1^8*t^3.62 + t^3.73/g1^10 + g1*t^3.83 + t^4.14/g1^24 + g1^5*t^4.14 + t^4.35/g1^2 + g1^9*t^4.45 + (2*t^4.55)/g1^9 + t^4.76/g1^16 + 4*g1^6*t^4.96 + t^5.07/g1^12 + (3*t^5.17)/g1 + g1^3*t^5.48 + 2*g1^14*t^5.58 + (2*t^5.69)/g1^4 + g1^7*t^5.79 + t^5.8/g1^22 - 2*t^6. + 2*g1^11*t^6.1 + g1^22*t^6.2 + (2*t^6.21)/g1^7 + t^6.22/g1^36 + 2*g1^4*t^6.31 + (2*t^6.42)/g1^14 + g1^8*t^6.62 + (2*t^6.63)/g1^21 + g1^19*t^6.72 + 2*g1*t^6.83 + t^6.84/g1^28 + 2*g1^12*t^6.93 + (3*t^7.04)/g1^6 + t^7.14/g1^24 + g1^16*t^7.24 + (2*t^7.25)/g1^13 - t^7.35/g1^2 + t^7.45/g1^20 + 6*g1^9*t^7.45 + (2*t^7.55)/g1^9 + g1^20*t^7.55 + 5*g1^2*t^7.65 + (2*t^7.76)/g1^16 + t^7.87/g1^34 + g1^6*t^7.96 + 4*g1^17*t^8.06 - t^8.07/g1^12 + (3*t^8.17)/g1 + 2*g1^10*t^8.27 + (2*t^8.28)/g1^19 + t^8.29/g1^48 + t^8.38/g1^8 - 5*g1^3*t^8.48 + (2*t^8.49)/g1^26 + 3*g1^14*t^8.58 - t^8.59/g1^15 + 2*g1^25*t^8.68 + t^8.69/g1^4 + (2*t^8.7)/g1^33 + 4*g1^7*t^8.79 + g1^18*t^8.89 + (3*t^8.9)/g1^11 + t^8.91/g1^40 - t^4.35/(g1^2*y) - t^6.42/(g1^14*y) - (g1*t^6.83)/y - t^7.04/(g1^6*y) + (2*t^7.55)/(g1^9*y) + (g1^2*t^7.65)/y + t^7.76/(g1^16*y) + t^7.86/(g1^5*y) + (g1^6*t^7.96)/y + t^8.07/(g1^12*y) + (3*t^8.17)/(g1*y) + (g1^10*t^8.27)/y + (2*g1^3*t^8.48)/y - t^8.49/(g1^26*y) + (2*g1^14*t^8.58)/y + (2*t^8.69)/(g1^4*y) + (g1^7*t^8.79)/y + t^8.8/(g1^22*y) - (t^4.35*y)/g1^2 - (t^6.42*y)/g1^14 - g1*t^6.83*y - (t^7.04*y)/g1^6 + (2*t^7.55*y)/g1^9 + g1^2*t^7.65*y + (t^7.76*y)/g1^16 + (t^7.86*y)/g1^5 + g1^6*t^7.96*y + (t^8.07*y)/g1^12 + (3*t^8.17*y)/g1 + g1^10*t^8.27*y + 2*g1^3*t^8.48*y - (t^8.49*y)/g1^26 + 2*g1^14*t^8.58*y + (2*t^8.69*y)/g1^4 + g1^7*t^8.79*y + (t^8.8*y)/g1^22 |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
4298 | SU2adj1nf2 | $\phi_1q_1^2$ + $ M_1q_2\tilde{q}_1$ + $ M_2q_2\tilde{q}_2$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_1^2$ + $ M_4q_1q_2$ + $ M_2M_4$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_3M_6$ + $ M_7\phi_1\tilde{q}_2^2$ + $ M_5M_8$ | 0.6643 | 0.8239 | 0.8063 | [X:[], M:[1.0, 1.1701, 0.957, 0.8299, 0.7234, 1.043, 0.6803, 1.2766], q:[0.7766, 0.3934], qb:[0.6066, 0.4365], phi:[0.4467]] | t^2.04 + t^2.49 + t^2.68 + t^3. + t^3.13 + t^3.51 + t^3.64 + t^3.7 + t^3.83 + t^4.08 + t^4.15 + t^4.34 + t^4.47 + t^4.53 + t^4.72 + 2*t^4.98 + t^5.04 + 2*t^5.17 + t^5.55 + t^5.62 + 2*t^5.68 + t^5.74 + t^5.81 - t^6. - t^4.34/y - t^4.34*y | detail |