Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57434 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ + ${ }M_{1}\phi_{1}^{3}$ 1.188 1.413 0.8408 [X:[1.6], M:[0.8], q:[0.6, 0.2], qb:[0.6, 0.2], phi:[0.4]] [X:[[0, 0]], M:[[0, 0]], q:[[-1, 0], [0, -1]], qb:[[1, 0], [0, 1]], phi:[[0, 0]]] 2 {a: 297/250, c: 1413/1000, X1: 8/5, M1: 4/5, q1: 3/5, q2: 1/5, qb1: 3/5, qb2: 1/5, phi1: 2/5}
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{1}$, ${ }\phi_{1}^{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }M_{1}^{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{2}q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }X_{1}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}^{3}$, ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}\tilde{q}_{2}^{3}$ ${}M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$, ${ }q_{1}q_{2}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{1}\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ 3}\phi_{1}q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ 2}\phi_{1}^{2}q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}\tilde{q}_{2}^{2}$, ${ 2}\phi_{1}^{2}q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }\phi_{1}^{3}q_{2}^{2}\tilde{q}_{2}^{2}$ 14 5*t^2.4 + 4*t^3.6 + 2*t^4.2 + 17*t^4.8 + 6*t^5.4 + 14*t^6. + 10*t^6.6 + 44*t^7.2 + 22*t^7.8 + 32*t^8.4 - t^4.2/y - t^5.4/y - (4*t^6.6)/y + (5*t^7.8)/y - t^4.2*y - t^5.4*y - 4*t^6.6*y + 5*t^7.8*y 3*t^2.4 + (g1*t^2.4)/g2 + (g2*t^2.4)/g1 + 2*t^3.6 + (g1*t^3.6)/g2 + (g2*t^3.6)/g1 + t^4.2/(g1*g2^2) + g1*g2^2*t^4.2 + 9*t^4.8 + (g1^2*t^4.8)/g2^2 + (3*g1*t^4.8)/g2 + (3*g2*t^4.8)/g1 + (g2^2*t^4.8)/g1^2 + t^5.4/g2^3 + t^5.4/(g1*g2^2) + t^5.4/(g1^2*g2) + g1^2*g2*t^5.4 + g1*g2^2*t^5.4 + g2^3*t^5.4 + 4*t^6. + (g1^2*t^6.)/g2^2 + (4*g1*t^6.)/g2 + (4*g2*t^6.)/g1 + (g2^2*t^6.)/g1^2 + t^6.6/g2^3 + (3*t^6.6)/(g1*g2^2) + t^6.6/(g1^2*g2) + g1^2*g2*t^6.6 + 3*g1*g2^2*t^6.6 + g2^3*t^6.6 + 18*t^7.2 + (g1^3*t^7.2)/g2^3 + (4*g1^2*t^7.2)/g2^2 + (8*g1*t^7.2)/g2 + (8*g2*t^7.2)/g1 + (4*g2^2*t^7.2)/g1^2 + (g2^3*t^7.2)/g1^3 + t^7.8/g1^3 + g1^3*t^7.8 + (g1*t^7.8)/g2^4 + (3*t^7.8)/g2^3 + (3*t^7.8)/(g1*g2^2) + (3*t^7.8)/(g1^2*g2) + 3*g1^2*g2*t^7.8 + 3*g1*g2^2*t^7.8 + 3*g2^3*t^7.8 + (g2^4*t^7.8)/g1 + 6*t^8.4 + t^8.4/(g1^2*g2^4) + (g1^3*t^8.4)/g2^3 + (4*g1^2*t^8.4)/g2^2 + (7*g1*t^8.4)/g2 + (7*g2*t^8.4)/g1 + (4*g2^2*t^8.4)/g1^2 + (g2^3*t^8.4)/g1^3 + g1^2*g2^4*t^8.4 - t^4.2/y - t^5.4/y - (2*t^6.6)/y - (g1*t^6.6)/(g2*y) - (g2*t^6.6)/(g1*y) + t^7.8/y + (2*g1*t^7.8)/(g2*y) + (2*g2*t^7.8)/(g1*y) - t^4.2*y - t^5.4*y - 2*t^6.6*y - (g1*t^6.6*y)/g2 - (g2*t^6.6*y)/g1 + t^7.8*y + (2*g1*t^7.8*y)/g2 + (2*g2*t^7.8*y)/g1


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
58799 ${}\phi_{1}^{5}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ + ${ }M_{1}\phi_{1}^{3}$ + ${ }\phi_{1}^{2}q_{1}q_{2}^{2}$ 1.161 1.386 0.8377 [X:[1.6], M:[0.8], q:[0.6667, 0.2667], qb:[0.5333, 0.1333], phi:[0.4]] 5*t^2.4 + 5*t^3.6 + 21*t^4.8 + 22*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail {a: 1161/1000, c: 693/500, X1: 8/5, M1: 4/5, q1: 2/3, q2: 4/15, qb1: 8/15, qb2: 2/15, phi1: 2/5}


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47887 SU3adj1nf2 ${}\phi_{1}^{5}$ + ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$ + ${ }q_{2}\tilde{q}_{2}X_{1}$ 1.1715 1.384 0.8465 [X:[1.6], q:[0.6, 0.2], qb:[0.6, 0.2], phi:[0.4]] 4*t^2.4 + 5*t^3.6 + 2*t^4.2 + 12*t^4.8 + 6*t^5.4 + 14*t^6. - t^4.2/y - t^5.4/y - t^4.2*y - t^5.4*y detail {a: 2343/2000, c: 173/125, X1: 8/5, q1: 3/5, q2: 1/5, qb1: 3/5, qb2: 1/5, phi1: 2/5}