Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57420 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}\phi_{1}q_{1}\tilde{q}_{2}$ 1.5158 1.7667 0.858 [M:[0.6714, 0.6714], q:[0.5, 0.4929], qb:[0.5, 0.4929], phi:[0.3357]] [M:[[-5, -1, 1], [1, 1, -5]], q:[[0, -1, 0], [6, 0, 0]], qb:[[0, 1, 0], [0, 0, 6]], phi:[[-1, 0, -1]]] 3
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{2}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }\phi_{1}^{4}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{1}^{2}$, ${ }M_{2}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{2}$, ${ }M_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{1}q_{2}\tilde{q}_{1}$, ${ }M_{2}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }M_{1}q_{1}\tilde{q}_{2}$, ${ }M_{2}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{1}$, ${ }M_{1}q_{1}\tilde{q}_{1}$, ${ }M_{2}\phi_{1}^{3}$, ${ }\phi_{1}^{5}$, ${ }M_{1}\phi_{1}^{3}$, ${ }\phi_{1}q_{1}q_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}q_{1}^{2}q_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}\tilde{q}_{2}$, ${ }q_{2}^{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}q_{2}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }q_{1}q_{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{2}\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}^{3}q_{2}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{2}$ ${}\phi_{1}^{3}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}^{3}q_{1}\tilde{q}_{2}$ -1 3*t^2.014 + t^2.957 + 2*t^2.979 + t^3. + t^3.021 + t^3.964 + t^4.007 + 6*t^4.028 + 4*t^4.972 + 8*t^4.993 + 4*t^5.014 + 3*t^5.036 + 2*t^5.464 + 2*t^5.486 + t^5.915 + 2*t^5.936 + 4*t^5.957 + 4*t^5.979 - t^6. + 2*t^6.021 + 11*t^6.043 + 2*t^6.472 + 2*t^6.493 + t^6.922 + 2*t^6.943 + 2*t^6.964 + 10*t^6.986 + 16*t^7.007 + 8*t^7.028 + 6*t^7.05 + 2*t^7.457 + 6*t^7.479 + 6*t^7.5 + 2*t^7.521 + 5*t^7.929 + 9*t^7.95 + 16*t^7.972 + 11*t^7.993 - t^8.014 + 2*t^8.036 + 18*t^8.057 + 2*t^8.422 + 6*t^8.443 + 4*t^8.464 + 4*t^8.486 + 2*t^8.507 - 2*t^8.528 + t^8.872 + 2*t^8.893 + 4*t^8.915 + 9*t^8.936 + 5*t^8.957 - t^8.979 - t^4.007/y - t^5.014/y - (3*t^6.021)/y - t^6.964/y - (2*t^6.986)/y - t^7.007/y - t^7.028/y + (2*t^7.972)/y + (7*t^7.993)/y + (2*t^8.014)/y - (4*t^8.036)/y + (2*t^8.936)/y + (2*t^8.957)/y + (2*t^8.979)/y - t^4.007*y - t^5.014*y - 3*t^6.021*y - t^6.964*y - 2*t^6.986*y - t^7.007*y - t^7.028*y + 2*t^7.972*y + 7*t^7.993*y + 2*t^8.014*y - 4*t^8.036*y + 2*t^8.936*y + 2*t^8.957*y + 2*t^8.979*y (g1*g2*t^2.014)/g3^5 + t^2.014/(g1^2*g3^2) + (g3*t^2.014)/(g1^5*g2) + g1^6*g3^6*t^2.957 + g1^6*g2*t^2.979 + (g3^6*t^2.979)/g2 + t^3. + t^3.021/(g1^3*g3^3) + g1^5*g3^5*t^3.964 + t^4.007/(g1*g3) + (g1^2*g2^2*t^4.028)/g3^10 + (g2*t^4.028)/(g1*g3^7) + (2*t^4.028)/(g1^4*g3^4) + t^4.028/(g1^7*g2*g3) + (g3^2*t^4.028)/(g1^10*g2^2) + g1^7*g2*g3*t^4.972 + 2*g1^4*g3^4*t^4.972 + (g1*g3^7*t^4.972)/g2 + (g1^7*g2^2*t^4.993)/g3^5 + (2*g1^4*g2*t^4.993)/g3^2 + 2*g1*g3*t^4.993 + (2*g3^4*t^4.993)/(g1^2*g2) + (g3^7*t^4.993)/(g1^5*g2^2) + (g1*g2*t^5.014)/g3^5 + (2*t^5.014)/(g1^2*g3^2) + (g3*t^5.014)/(g1^5*g2) + (g2*t^5.036)/(g1^2*g3^8) + t^5.036/(g1^5*g3^5) + t^5.036/(g1^8*g2*g3^2) + (g1^11*t^5.464)/(g2*g3) + (g2*g3^11*t^5.464)/g1 + (g1^5*t^5.486)/(g2^2*g3) + (g2^2*g3^5*t^5.486)/g1 + g1^12*g3^12*t^5.915 + g1^12*g2*g3^6*t^5.936 + (g1^6*g3^12*t^5.936)/g2 + g1^12*g2^2*t^5.957 + 2*g1^6*g3^6*t^5.957 + (g3^12*t^5.957)/g2^2 + g1^6*g2*t^5.979 + 2*g1^3*g3^3*t^5.979 + (g3^6*t^5.979)/g2 - 3*t^6. + (g1^3*g2*t^6.)/g3^3 + (g3^3*t^6.)/(g1^3*g2) + (2*t^6.021)/(g1^3*g3^3) + t^6.043/(g1^12*g2^2) + (g1^3*g2^3*t^6.043)/g3^15 + (g2^2*t^6.043)/g3^12 + (2*g2*t^6.043)/(g1^3*g3^9) + (3*t^6.043)/(g1^6*g3^6) + (2*t^6.043)/(g1^9*g2*g3^3) + (g3^3*t^6.043)/(g1^15*g2^3) + (g1^10*t^6.472)/(g2*g3^2) + (g2*g3^10*t^6.472)/g1^2 + (g1^4*t^6.493)/(g2^2*g3^2) + (g2^2*g3^4*t^6.493)/g1^2 + g1^11*g3^11*t^6.922 + g1^11*g2*g3^5*t^6.943 + (g1^5*g3^11*t^6.943)/g2 + 2*g1^5*g3^5*t^6.964 + (g1^8*g2^2*t^6.986)/g3^4 + (2*g1^5*g2*t^6.986)/g3 + 4*g1^2*g3^2*t^6.986 + (2*g3^5*t^6.986)/(g1*g2) + (g3^8*t^6.986)/(g1^4*g2^2) + (g1^8*g2^3*t^7.007)/g3^10 + (2*g1^5*g2^2*t^7.007)/g3^7 + (4*g1^2*g2*t^7.007)/g3^4 + (2*t^7.007)/(g1*g3) + (4*g3^2*t^7.007)/(g1^4*g2) + (2*g3^5*t^7.007)/(g1^7*g2^2) + (g3^8*t^7.007)/(g1^10*g2^3) + (g1^2*g2^2*t^7.028)/g3^10 + (g2*t^7.028)/(g1*g3^7) + (4*t^7.028)/(g1^4*g3^4) + t^7.028/(g1^7*g2*g3) + (g3^2*t^7.028)/(g1^10*g2^2) + (g2^2*t^7.05)/(g1*g3^13) + (g2*t^7.05)/(g1^4*g3^10) + (2*t^7.05)/(g1^7*g3^7) + t^7.05/(g1^10*g2*g3^4) + t^7.05/(g1^13*g2^2*g3) + (g1^15*t^7.457)/g3^3 + (g3^15*t^7.457)/g1^3 + (g1^12*t^7.479)/g3^6 + (2*g1^9*t^7.479)/(g2*g3^3) + (2*g2*g3^9*t^7.479)/g1^3 + (g3^12*t^7.479)/g1^6 + t^7.5/g2^3 + g2^3*t^7.5 + (2*g1^3*t^7.5)/(g2^2*g3^3) + (2*g2^2*g3^3*t^7.5)/g1^3 + t^7.521/(g1^3*g2^3*g3^3) + (g2^3*t^7.521)/(g1^3*g3^3) + g1^13*g2*g3^7*t^7.929 + 3*g1^10*g3^10*t^7.929 + (g1^7*g3^13*t^7.929)/g2 + g1^13*g2^2*g3*t^7.95 + 3*g1^10*g2*g3^4*t^7.95 + g1^7*g3^7*t^7.95 + (3*g1^4*g3^10*t^7.95)/g2 + (g1*g3^13*t^7.95)/g2^2 + (g1^13*g2^3*t^7.972)/g3^5 + (2*g1^10*g2^2*t^7.972)/g3^2 + 2*g1^7*g2*g3*t^7.972 + 6*g1^4*g3^4*t^7.972 + (2*g1*g3^7*t^7.972)/g2 + (2*g3^10*t^7.972)/(g1^2*g2^2) + (g3^13*t^7.972)/(g1^5*g2^3) + (g1^7*g2^2*t^7.993)/g3^5 + (3*g1^4*g2*t^7.993)/g3^2 + 3*g1*g3*t^7.993 + (3*g3^4*t^7.993)/(g1^2*g2) + (g3^7*t^7.993)/(g1^5*g2^2) + (g1^4*g2^2*t^8.014)/g3^8 - (g1*g2*t^8.014)/g3^5 - t^8.014/(g1^2*g3^2) - (g3*t^8.014)/(g1^5*g2) + (g3^4*t^8.014)/(g1^8*g2^2) + (2*t^8.036)/(g1^5*g3^5) + (g1^4*g2^4*t^8.057)/g3^20 + (g1*g2^3*t^8.057)/g3^17 + (2*g2^2*t^8.057)/(g1^2*g3^14) + (3*g2*t^8.057)/(g1^5*g3^11) + (4*t^8.057)/(g1^8*g3^8) + (3*t^8.057)/(g1^11*g2*g3^5) + (2*t^8.057)/(g1^14*g2^2*g3^2) + (g3*t^8.057)/(g1^17*g2^3) + (g3^4*t^8.057)/(g1^20*g2^4) + (g1^17*g3^5*t^8.422)/g2 + g1^5*g2*g3^17*t^8.422 + (g1^17*t^8.443)/g3 + (2*g1^11*g3^5*t^8.443)/g2^2 + 2*g1^5*g2^2*g3^11*t^8.443 + (g3^17*t^8.443)/g1 + (g1^11*t^8.464)/(g2*g3) + (g1^5*g3^5*t^8.464)/g2^3 + g1^5*g2^3*g3^5*t^8.464 + (g2*g3^11*t^8.464)/g1 + (2*g1^8*t^8.486)/(g2*g3^4) + (2*g2*g3^8*t^8.486)/g1^4 - (g1^5*t^8.507)/(g2*g3^7) + (2*g1^2*t^8.507)/(g2^2*g3^4) + (2*g2^2*g3^2*t^8.507)/g1^4 - (g2*g3^5*t^8.507)/g1^7 - t^8.528/(g1*g2^2*g3^7) - (g2^2*t^8.528)/(g1^7*g3) + g1^18*g3^18*t^8.872 + g1^18*g2*g3^12*t^8.893 + (g1^12*g3^18*t^8.893)/g2 + g1^18*g2^2*g3^6*t^8.915 + 2*g1^12*g3^12*t^8.915 + (g1^6*g3^18*t^8.915)/g2^2 + g1^18*g2^3*t^8.936 + 2*g1^12*g2*g3^6*t^8.936 + 3*g1^9*g3^9*t^8.936 + (2*g1^6*g3^12*t^8.936)/g2 + (g3^18*t^8.936)/g2^3 + g1^12*g2^2*t^8.957 + 3*g1^9*g2*g3^3*t^8.957 - 3*g1^6*g3^6*t^8.957 + (3*g1^3*g3^9*t^8.957)/g2 + (g3^12*t^8.957)/g2^2 - 4*g1^6*g2*t^8.979 + (g1^9*g2^2*t^8.979)/g3^3 + 5*g1^3*g3^3*t^8.979 - (4*g3^6*t^8.979)/g2 + (g3^9*t^8.979)/(g1^3*g2^2) - t^4.007/(g1*g3*y) - t^5.014/(g1^2*g3^2*y) - t^6.021/(g1^6*g2*y) - (g2*t^6.021)/(g3^6*y) - t^6.021/(g1^3*g3^3*y) - (g1^5*g3^5*t^6.964)/y - (g1^5*g2*t^6.986)/(g3*y) - (g3^5*t^6.986)/(g1*g2*y) - t^7.007/(g1*g3*y) - t^7.028/(g1^4*g3^4*y) + (g1^7*g2*g3*t^7.972)/y + (g1*g3^7*t^7.972)/(g2*y) + (g1^7*g2^2*t^7.993)/(g3^5*y) + (g1^4*g2*t^7.993)/(g3^2*y) + (3*g1*g3*t^7.993)/y + (g3^4*t^7.993)/(g1^2*g2*y) + (g3^7*t^7.993)/(g1^5*g2^2*y) + (g1*g2*t^8.014)/(g3^5*y) + (g3*t^8.014)/(g1^5*g2*y) - (g1*g2^2*t^8.036)/(g3^11*y) - (2*t^8.036)/(g1^5*g3^5*y) - (g3*t^8.036)/(g1^11*g2^2*y) + (g1^12*g2*g3^6*t^8.936)/y + (g1^6*g3^12*t^8.936)/(g2*y) + (2*g1^6*g3^6*t^8.957)/y + (g1^6*g2*t^8.979)/y + (g3^6*t^8.979)/(g2*y) - (t^4.007*y)/(g1*g3) - (t^5.014*y)/(g1^2*g3^2) - (t^6.021*y)/(g1^6*g2) - (g2*t^6.021*y)/g3^6 - (t^6.021*y)/(g1^3*g3^3) - g1^5*g3^5*t^6.964*y - (g1^5*g2*t^6.986*y)/g3 - (g3^5*t^6.986*y)/(g1*g2) - (t^7.007*y)/(g1*g3) - (t^7.028*y)/(g1^4*g3^4) + g1^7*g2*g3*t^7.972*y + (g1*g3^7*t^7.972*y)/g2 + (g1^7*g2^2*t^7.993*y)/g3^5 + (g1^4*g2*t^7.993*y)/g3^2 + 3*g1*g3*t^7.993*y + (g3^4*t^7.993*y)/(g1^2*g2) + (g3^7*t^7.993*y)/(g1^5*g2^2) + (g1*g2*t^8.014*y)/g3^5 + (g3*t^8.014*y)/(g1^5*g2) - (g1*g2^2*t^8.036*y)/g3^11 - (2*t^8.036*y)/(g1^5*g3^5) - (g3*t^8.036*y)/(g1^11*g2^2) + g1^12*g2*g3^6*t^8.936*y + (g1^6*g3^12*t^8.936*y)/g2 + 2*g1^6*g3^6*t^8.957*y + g1^6*g2*t^8.979*y + (g3^6*t^8.979*y)/g2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
47900 SU3adj1nf2 ${}q_{1}^{2}\tilde{q}_{1}^{2}$ + ${ }M_{1}\phi_{1}q_{2}\tilde{q}_{1}$ 1.495 1.7254 0.8664 [M:[0.6707], q:[0.4996, 0.493], qb:[0.5004, 0.4921], phi:[0.3358]] t^2.012 + t^2.015 + t^2.955 + t^2.975 + t^2.98 + t^3. + t^3.022 + t^3.963 + t^3.982 + t^4.007 + t^4.024 + t^4.027 + t^4.03 + t^4.968 + 2*t^4.97 + t^4.987 + 2*t^4.99 + t^4.993 + 2*t^4.995 + t^5.012 + 2*t^5.015 + t^5.035 + t^5.037 + t^5.462 + t^5.464 + t^5.484 + t^5.486 + t^5.911 + t^5.93 + t^5.936 + t^5.95 + 2*t^5.955 + t^5.961 + t^5.975 + 2*t^5.978 + t^5.995 + 2*t^5.997 - 3*t^6. - t^4.007/y - t^5.015/y - t^4.007*y - t^5.015*y detail