Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
574 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{3}M_{5}$ 0.7096 0.8749 0.811 [M:[1.0, 0.9169, 1.0831, 0.8338, 0.9169], q:[0.4404, 0.5596], qb:[0.4765, 0.6066], phi:[0.4792]] [M:[[0, 0], [-4, -4], [4, 4], [-8, -8], [-4, -4]], q:[[-8, -4], [8, 4]], qb:[[4, 0], [0, 4]], phi:[[-1, -1]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{4}$, ${ }M_{2}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{1}$, ${ }q_{2}\tilde{q}_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{4}^{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}M_{4}$, ${ }M_{4}M_{5}$, ${ }M_{4}\phi_{1}^{2}$, ${ }M_{2}^{2}$, ${ }M_{1}M_{4}$, ${ }M_{2}M_{5}$, ${ }M_{5}^{2}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{1}M_{2}$, ${ }M_{1}M_{5}$, ${ }\phi_{1}^{4}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ ${}$ -3 t^2.501 + 2*t^2.751 + t^2.875 + t^3. + t^3.108 + t^3.141 + t^4.08 + t^4.188 + t^4.297 + t^4.438 + t^4.546 + t^4.579 + t^4.687 + t^4.795 + t^4.936 + t^5.003 + t^5.077 + 2*t^5.252 + t^5.377 + 3*t^5.501 + 2*t^5.626 + 2*t^5.751 + t^5.859 + t^5.875 + t^5.892 + t^5.984 - 3*t^6. + t^6.016 + t^6.217 - t^6.249 + t^6.282 - t^6.358 - t^6.39 - t^6.499 + t^6.581 + t^6.69 + t^6.798 + 2*t^6.831 + 2*t^6.939 + t^6.955 + 2*t^7.048 + t^7.064 + t^7.08 + t^7.172 + 3*t^7.188 - t^7.205 + t^7.221 + 3*t^7.297 + t^7.329 + t^7.405 + t^7.438 + t^7.454 + t^7.504 + 2*t^7.546 + t^7.579 + t^7.655 + t^7.687 - t^7.703 + t^7.719 + 2*t^7.754 + t^7.828 + t^7.878 + t^7.904 - t^7.92 + t^7.952 + 3*t^8.003 - t^8.061 + t^8.077 + 2*t^8.128 + t^8.16 - t^8.202 + t^8.218 + 4*t^8.252 + t^8.268 + 4*t^8.377 - t^8.393 + t^8.485 + t^8.518 + t^8.594 + 3*t^8.626 + t^8.658 + 2*t^8.735 - 7*t^8.751 + 2*t^8.767 + t^8.843 - t^8.859 - t^8.875 + t^8.968 + 2*t^8.984 - t^4.438/y - t^6.939/y - t^7.188/y - t^7.313/y + t^7.562/y + t^7.687/y + t^7.936/y + (2*t^8.252)/y + t^8.377/y + (2*t^8.501)/y + t^8.61/y + (2*t^8.626)/y + t^8.642/y + (2*t^8.751)/y + (2*t^8.859)/y + t^8.875/y + (2*t^8.892)/y + t^8.984/y - t^4.438*y - t^6.939*y - t^7.188*y - t^7.313*y + t^7.562*y + t^7.687*y + t^7.936*y + 2*t^8.252*y + t^8.377*y + 2*t^8.501*y + t^8.61*y + 2*t^8.626*y + t^8.642*y + 2*t^8.751*y + 2*t^8.859*y + t^8.875*y + 2*t^8.892*y + t^8.984*y t^2.501/(g1^8*g2^8) + (2*t^2.751)/(g1^4*g2^4) + t^2.875/(g1^2*g2^2) + t^3. + g1^12*g2^4*t^3.108 + t^3.141/g1^8 + t^4.08/(g1^17*g2^9) + t^4.188/(g1^5*g2^5) + (g1^7*t^4.297)/g2 + t^4.438/(g1*g2) + g1^11*g2^3*t^4.546 + t^4.579/(g1^9*g2) + g1^3*g2^3*t^4.687 + g1^15*g2^7*t^4.795 + g1^7*g2^7*t^4.936 + t^5.003/(g1^16*g2^16) + (g2^7*t^5.077)/g1 + (2*t^5.252)/(g1^12*g2^12) + t^5.377/(g1^10*g2^10) + (3*t^5.501)/(g1^8*g2^8) + (2*t^5.626)/(g1^6*g2^6) + (2*t^5.751)/(g1^4*g2^4) + g1^8*t^5.859 + t^5.875/(g1^2*g2^2) + t^5.892/(g1^12*g2^4) + g1^10*g2^2*t^5.984 - 3*t^6. + t^6.016/(g1^10*g2^2) + g1^24*g2^8*t^6.217 - g1^4*g2^4*t^6.249 + t^6.282/g1^16 - g1^16*g2^8*t^6.358 - (g2^4*t^6.39)/g1^4 - g1^8*g2^8*t^6.499 + t^6.581/(g1^25*g2^17) + t^6.69/(g1^13*g2^13) + t^6.798/(g1*g2^9) + (2*t^6.831)/(g1^21*g2^13) + (2*t^6.939)/(g1^9*g2^9) + t^6.955/(g1^19*g2^11) + (2*g1^3*t^7.048)/g2^5 + t^7.064/(g1^7*g2^7) + t^7.08/(g1^17*g2^9) + (g1^5*t^7.172)/g2^3 + (3*t^7.188)/(g1^5*g2^5) - t^7.205/(g1^15*g2^7) + t^7.221/(g1^25*g2^9) + (3*g1^7*t^7.297)/g2 + t^7.329/(g1^13*g2^5) + g1^19*g2^3*t^7.405 + t^7.438/(g1*g2) + t^7.454/(g1^11*g2^3) + t^7.504/(g1^24*g2^24) + 2*g1^11*g2^3*t^7.546 + t^7.579/(g1^9*g2) + g1^23*g2^7*t^7.655 + g1^3*g2^3*t^7.687 - (g2*t^7.703)/g1^7 + t^7.719/(g1^17*g2) + (2*t^7.754)/(g1^20*g2^20) + (g2^3*t^7.828)/g1^5 + t^7.878/(g1^18*g2^18) + g1^27*g2^11*t^7.904 - g1^17*g2^9*t^7.92 + (g2^5*t^7.952)/g1^3 + (3*t^8.003)/(g1^16*g2^16) - g1^9*g2^9*t^8.061 + (g2^7*t^8.077)/g1 + (2*t^8.128)/(g1^14*g2^14) + t^8.16/(g1^34*g2^18) - g1*g2^9*t^8.202 + (g2^7*t^8.218)/g1^9 + (4*t^8.252)/(g1^12*g2^12) + t^8.268/(g1^22*g2^14) + (4*t^8.377)/(g1^10*g2^10) - t^8.393/(g1^20*g2^12) + (g1^2*t^8.485)/g2^6 + t^8.518/(g1^18*g2^10) + (g1^14*t^8.594)/g2^2 + (3*t^8.626)/(g1^6*g2^6) + t^8.658/(g1^26*g2^10) + (2*g1^6*t^8.735)/g2^2 - (7*t^8.751)/(g1^4*g2^4) + (2*t^8.767)/(g1^14*g2^6) + g1^18*g2^2*t^8.843 - g1^8*t^8.859 - t^8.875/(g1^2*g2^2) + g1^20*g2^4*t^8.968 + 2*g1^10*g2^2*t^8.984 - t^4.438/(g1*g2*y) - t^6.939/(g1^9*g2^9*y) - t^7.188/(g1^5*g2^5*y) - t^7.313/(g1^3*g2^3*y) + (g1*g2*t^7.562)/y + (g1^3*g2^3*t^7.687)/y + (g1^7*g2^7*t^7.936)/y + (2*t^8.252)/(g1^12*g2^12*y) + t^8.377/(g1^10*g2^10*y) + (2*t^8.501)/(g1^8*g2^8*y) + (g1^4*t^8.61)/(g2^4*y) + (2*t^8.626)/(g1^6*g2^6*y) + t^8.642/(g1^16*g2^8*y) + (2*t^8.751)/(g1^4*g2^4*y) + (2*g1^8*t^8.859)/y + t^8.875/(g1^2*g2^2*y) + (2*t^8.892)/(g1^12*g2^4*y) + (g1^10*g2^2*t^8.984)/y - (t^4.438*y)/(g1*g2) - (t^6.939*y)/(g1^9*g2^9) - (t^7.188*y)/(g1^5*g2^5) - (t^7.313*y)/(g1^3*g2^3) + g1*g2*t^7.562*y + g1^3*g2^3*t^7.687*y + g1^7*g2^7*t^7.936*y + (2*t^8.252*y)/(g1^12*g2^12) + (t^8.377*y)/(g1^10*g2^10) + (2*t^8.501*y)/(g1^8*g2^8) + (g1^4*t^8.61*y)/g2^4 + (2*t^8.626*y)/(g1^6*g2^6) + (t^8.642*y)/(g1^16*g2^8) + (2*t^8.751*y)/(g1^4*g2^4) + 2*g1^8*t^8.859*y + (t^8.875*y)/(g1^2*g2^2) + (2*t^8.892*y)/(g1^12*g2^4) + g1^10*g2^2*t^8.984*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
889 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{3}M_{5}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ 0.708 0.8725 0.8115 [M:[1.0, 0.9246, 1.0754, 0.8491, 0.9246], q:[0.4246, 0.5754], qb:[0.5, 0.5754], phi:[0.4811]] t^2.547 + 2*t^2.774 + t^2.887 + 2*t^3. + t^3.226 + t^3.991 + t^4.217 + 3*t^4.443 + 2*t^4.67 + 3*t^4.896 + t^5.095 + 2*t^5.321 + t^5.434 + 3*t^5.547 + 2*t^5.66 + 3*t^5.774 + 2*t^5.887 - t^6. - t^4.443/y - t^4.443*y detail
1933 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{3}M_{5}$ + ${ }\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{4}X_{1}$ 0.5864 0.7382 0.7944 [X:[1.5714], M:[1.0, 0.7143, 1.2857, 0.4286, 0.7143], q:[0.3214, 0.6786], qb:[0.3929, 0.8929], phi:[0.4286]] 2*t^2.143 + t^2.571 + t^3. + 2*t^3.214 + t^3.429 + 2*t^3.643 + 3*t^4.286 + 3*t^4.714 + 3*t^5.143 + 4*t^5.357 + 2*t^5.571 + 4*t^5.786 - t^6. - t^4.286/y - t^4.286*y detail {a: 1839/3136, c: 2315/3136, X1: 11/7, M1: 1, M2: 5/7, M3: 9/7, M4: 3/7, M5: 5/7, q1: 9/28, q2: 19/28, qb1: 11/28, qb2: 25/28, phi1: 3/7}
1935 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{3}M_{5}$ + ${ }\phi_{1}\tilde{q}_{2}^{2}$ 0.6818 0.8558 0.7967 [M:[1.0, 0.8382, 1.1618, 0.6764, 0.8382], q:[0.4466, 0.5534], qb:[0.3916, 0.7702], phi:[0.4595]] t^2.029 + 2*t^2.515 + t^2.757 + t^2.835 + t^3. + t^3.65 + t^3.728 + t^3.893 + 2*t^4.058 + t^4.214 + t^4.379 + 2*t^4.544 + t^4.699 + t^4.786 + t^4.864 + 4*t^5.029 + 2*t^5.272 + 2*t^5.35 + 2*t^5.515 + t^5.592 + t^5.67 + 2*t^5.757 + t^5.922 - 2*t^6. - t^4.379/y - t^4.379*y detail
890 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}^{2}$ + ${ }M_{2}M_{3}$ + ${ }M_{3}M_{5}$ + ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$ 0.7095 0.8749 0.811 [M:[1.0, 0.9171, 1.0829, 0.8342, 0.9171], q:[0.4378, 0.5622], qb:[0.4793, 0.6036], phi:[0.4793]] t^2.503 + 2*t^2.751 + t^2.876 + t^3. + 2*t^3.124 + t^4.065 + t^4.189 + t^4.314 + t^4.438 + 2*t^4.562 + t^4.686 + t^4.811 + t^4.935 + t^5.005 + t^5.059 + 2*t^5.254 + t^5.378 + 3*t^5.503 + 2*t^5.627 + 2*t^5.751 + 3*t^5.876 - t^6. - t^4.438/y - t^4.438*y detail


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
363 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{3}q_{1}\tilde{q}_{1}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}^{2}$ + ${ }M_{2}M_{3}$ 0.7027 0.862 0.8151 [M:[1.0, 0.9335, 1.0665, 0.867], q:[0.4519, 0.5481], qb:[0.4817, 0.5848], phi:[0.4834]] t^2.601 + t^2.801 + t^2.9 + t^3. + t^3.089 + t^3.11 + t^3.199 + t^4.161 + t^4.251 + t^4.34 + t^4.45 + t^4.54 + t^4.56 + t^4.65 + t^4.739 + t^4.849 + t^4.959 + t^5.202 + t^5.402 + t^5.501 + t^5.601 + t^5.701 + 2*t^5.801 + t^5.9 + t^5.99 - 2*t^6. - t^4.45/y - t^4.45*y detail