Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
5727 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{1}q_{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{4}X_{1}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}M_{7}$ + ${ }M_{8}\phi_{1}q_{2}^{2}$ + ${ }M_{9}\phi_{1}\tilde{q}_{2}^{2}$ 0.7196 0.9248 0.7781 [X:[1.3579], M:[1.0209, 1.1685, 0.9791, 0.6421, 0.8315, 0.7159, 0.8315, 0.7577, 0.6741], q:[0.7737, 0.3948], qb:[0.5843, 0.4366], phi:[0.4526]] [X:[[6]], M:[[-22], [14], [22], [-6], [-14], [12], [-14], [-32], [56]], q:[[-1], [15]], qb:[[7], [-29]], phi:[[2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{9}$, ${ }M_{6}$, ${ }M_{8}$, ${ }M_{5}$, ${ }M_{7}$, ${ }\phi_{1}^{2}$, ${ }M_{3}$, ${ }M_{1}$, ${ }q_{1}\tilde{q}_{2}$, ${ }M_{9}^{2}$, ${ }X_{1}$, ${ }M_{6}M_{9}$, ${ }M_{6}^{2}$, ${ }M_{8}M_{9}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{6}M_{8}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}M_{9}$, ${ }M_{7}M_{9}$, ${ }M_{8}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{9}\phi_{1}^{2}$, ${ }M_{5}M_{8}$, ${ }M_{7}M_{8}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }M_{3}M_{9}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{8}\phi_{1}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{1}M_{9}$, ${ }M_{1}M_{6}$, ${ }M_{3}M_{8}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{1}M_{8}$, ${ }M_{3}M_{5}$, ${ }M_{3}M_{7}$, ${ }\phi_{1}^{4}$, ${ }M_{1}M_{5}$, ${ }M_{1}M_{7}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{9}q_{1}\tilde{q}_{2}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }M_{8}q_{1}\tilde{q}_{2}$ ${}$ -2 t^2.022 + t^2.148 + t^2.273 + 2*t^2.494 + t^2.716 + t^2.937 + t^3.063 + t^3.631 + t^4.045 + t^4.074 + t^4.17 + 3*t^4.295 + 2*t^4.421 + 2*t^4.517 + t^4.546 + 2*t^4.642 + t^4.738 + 2*t^4.767 + 2*t^4.864 + t^4.96 + 4*t^4.989 + 2*t^5.085 + 4*t^5.21 + t^5.336 + 2*t^5.432 + t^5.557 + 2*t^5.653 + 2*t^5.779 + t^5.904 - 2*t^6. + t^6.067 + t^6.096 + 2*t^6.125 + t^6.192 + 3*t^6.318 + t^6.347 + 3*t^6.443 + 2*t^6.539 + 4*t^6.568 + 2*t^6.664 + 3*t^6.694 + t^6.76 + 4*t^6.79 + t^6.819 + 2*t^6.886 + 2*t^6.915 + t^6.982 + 6*t^7.011 + 2*t^7.04 + 2*t^7.107 + 5*t^7.136 + 5*t^7.233 + 4*t^7.262 + 5*t^7.358 + 2*t^7.454 + 7*t^7.483 + 3*t^7.579 + t^7.609 + 2*t^7.675 + 5*t^7.705 + 2*t^7.801 + t^7.83 + 6*t^7.926 - 2*t^8.022 + 3*t^8.052 + t^8.089 + t^8.118 + t^8.177 + t^8.214 - t^8.273 + 3*t^8.34 + t^8.369 + 2*t^8.398 + 3*t^8.465 - 3*t^8.494 + 2*t^8.561 + 5*t^8.591 + 3*t^8.62 + 2*t^8.687 + t^8.783 + 4*t^8.812 + 5*t^8.841 + 2*t^8.908 + 3*t^8.967 - t^4.358/y - t^6.38/y - t^6.506/y - t^6.631/y - t^6.852/y - t^7.074/y + t^7.17/y + t^7.295/y + t^7.421/y + (2*t^7.517)/y + (3*t^7.642)/y + t^7.738/y + (2*t^7.767)/y + (2*t^7.864)/y + t^7.96/y + (2*t^7.989)/y + (3*t^8.085)/y + (5*t^8.21)/y + (2*t^8.336)/y - t^8.402/y + (2*t^8.432)/y - t^8.528/y + (2*t^8.557)/y + t^8.779/y - t^8.875/y - t^4.358*y - t^6.38*y - t^6.506*y - t^6.631*y - t^6.852*y - t^7.074*y + t^7.17*y + t^7.295*y + t^7.421*y + 2*t^7.517*y + 3*t^7.642*y + t^7.738*y + 2*t^7.767*y + 2*t^7.864*y + t^7.96*y + 2*t^7.989*y + 3*t^8.085*y + 5*t^8.21*y + 2*t^8.336*y - t^8.402*y + 2*t^8.432*y - t^8.528*y + 2*t^8.557*y + t^8.779*y - t^8.875*y g1^56*t^2.022 + g1^12*t^2.148 + t^2.273/g1^32 + (2*t^2.494)/g1^14 + g1^4*t^2.716 + g1^22*t^2.937 + t^3.063/g1^22 + t^3.631/g1^30 + g1^112*t^4.045 + g1^6*t^4.074 + g1^68*t^4.17 + 3*g1^24*t^4.295 + (2*t^4.421)/g1^20 + 2*g1^42*t^4.517 + t^4.546/g1^64 + (2*t^4.642)/g1^2 + g1^60*t^4.738 + (2*t^4.767)/g1^46 + 2*g1^16*t^4.864 + g1^78*t^4.96 + (4*t^4.989)/g1^28 + 2*g1^34*t^5.085 + (4*t^5.21)/g1^10 + t^5.336/g1^54 + 2*g1^8*t^5.432 + t^5.557/g1^36 + 2*g1^26*t^5.653 + (2*t^5.779)/g1^18 + t^5.904/g1^62 - 2*t^6. + g1^168*t^6.067 + g1^62*t^6.096 + (2*t^6.125)/g1^44 + g1^124*t^6.192 + 3*g1^80*t^6.318 + t^6.347/g1^26 + 3*g1^36*t^6.443 + 2*g1^98*t^6.539 + (4*t^6.568)/g1^8 + 2*g1^54*t^6.664 + (3*t^6.694)/g1^52 + g1^116*t^6.76 + 4*g1^10*t^6.79 + t^6.819/g1^96 + 2*g1^72*t^6.886 + (2*t^6.915)/g1^34 + g1^134*t^6.982 + 6*g1^28*t^7.011 + (2*t^7.04)/g1^78 + 2*g1^90*t^7.107 + (5*t^7.136)/g1^16 + 5*g1^46*t^7.233 + (4*t^7.262)/g1^60 + 5*g1^2*t^7.358 + 2*g1^64*t^7.454 + (7*t^7.483)/g1^42 + 3*g1^20*t^7.579 + t^7.609/g1^86 + 2*g1^82*t^7.675 + (5*t^7.705)/g1^24 + 2*g1^38*t^7.801 + t^7.83/g1^68 + (6*t^7.926)/g1^6 - 2*g1^56*t^8.022 + (3*t^8.052)/g1^50 + g1^224*t^8.089 + g1^118*t^8.118 + t^8.177/g1^94 + g1^180*t^8.214 - t^8.273/g1^32 + 3*g1^136*t^8.34 + g1^30*t^8.369 + (2*t^8.398)/g1^76 + 3*g1^92*t^8.465 - (3*t^8.494)/g1^14 + 2*g1^154*t^8.561 + 5*g1^48*t^8.591 + (3*t^8.62)/g1^58 + 2*g1^110*t^8.687 + g1^172*t^8.783 + 4*g1^66*t^8.812 + (5*t^8.841)/g1^40 + 2*g1^128*t^8.908 + (3*t^8.967)/g1^84 - (g1^2*t^4.358)/y - (g1^58*t^6.38)/y - (g1^14*t^6.506)/y - t^6.631/(g1^30*y) - t^6.852/(g1^12*y) - (g1^6*t^7.074)/y + (g1^68*t^7.17)/y + (g1^24*t^7.295)/y + t^7.421/(g1^20*y) + (2*g1^42*t^7.517)/y + (3*t^7.642)/(g1^2*y) + (g1^60*t^7.738)/y + (2*t^7.767)/(g1^46*y) + (2*g1^16*t^7.864)/y + (g1^78*t^7.96)/y + (2*t^7.989)/(g1^28*y) + (3*g1^34*t^8.085)/y + (5*t^8.21)/(g1^10*y) + (2*t^8.336)/(g1^54*y) - (g1^114*t^8.402)/y + (2*g1^8*t^8.432)/y - (g1^70*t^8.528)/y + (2*t^8.557)/(g1^36*y) + t^8.779/(g1^18*y) - (g1^44*t^8.875)/y - g1^2*t^4.358*y - g1^58*t^6.38*y - g1^14*t^6.506*y - (t^6.631*y)/g1^30 - (t^6.852*y)/g1^12 - g1^6*t^7.074*y + g1^68*t^7.17*y + g1^24*t^7.295*y + (t^7.421*y)/g1^20 + 2*g1^42*t^7.517*y + (3*t^7.642*y)/g1^2 + g1^60*t^7.738*y + (2*t^7.767*y)/g1^46 + 2*g1^16*t^7.864*y + g1^78*t^7.96*y + (2*t^7.989*y)/g1^28 + 3*g1^34*t^8.085*y + (5*t^8.21*y)/g1^10 + (2*t^8.336*y)/g1^54 - g1^114*t^8.402*y + 2*g1^8*t^8.432*y - g1^70*t^8.528*y + (2*t^8.557*y)/g1^36 + (t^8.779*y)/g1^18 - g1^44*t^8.875*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
4238 SU2adj1nf2 ${}\phi_{1}q_{1}^{2}$ + ${ }M_{1}q_{2}\tilde{q}_{1}$ + ${ }M_{2}q_{2}\tilde{q}_{2}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{4}q_{1}\tilde{q}_{1}$ + ${ }M_{5}q_{1}q_{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{4}X_{1}$ + ${ }M_{6}\phi_{1}q_{2}\tilde{q}_{2}$ + ${ }M_{2}M_{7}$ + ${ }M_{8}\phi_{1}q_{2}^{2}$ 0.6988 0.8839 0.7906 [X:[1.3585], M:[1.019, 1.1697, 0.981, 0.6415, 0.8303, 0.7169, 0.8303, 0.7549], q:[0.7736, 0.3961], qb:[0.5849, 0.4341], phi:[0.4528]] t^2.151 + t^2.265 + 2*t^2.491 + t^2.717 + t^2.943 + t^3.057 + t^3.623 + t^3.963 + t^4.075 + 2*t^4.301 + 2*t^4.415 + t^4.529 + 2*t^4.642 + 2*t^4.756 + 2*t^4.868 + 4*t^4.982 + t^5.094 + 4*t^5.208 + t^5.322 + 2*t^5.434 + t^5.548 + t^5.66 + 2*t^5.774 + t^5.888 - 2*t^6. - t^4.358/y - t^4.358*y detail