Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57106 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}M_{6}$ + ${ }M_{4}M_{7}$ 0.6929 0.8532 0.8122 [M:[1.0276, 0.9945, 0.9724, 1.0166, 0.9834, 0.9724, 0.9834], q:[0.5083, 0.4641], qb:[0.4972, 0.5193], phi:[0.5028]] [M:[[10], [-2], [-10], [6], [-6], [-10], [-6]], q:[[3], [-13]], qb:[[-1], [7]], phi:[[1]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}q_{2}\tilde{q}_{1}$, ${ }M_{3}$, ${ }M_{6}$, ${ }M_{5}$, ${ }M_{7}$, ${ }M_{2}$, ${ }\phi_{1}^{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }q_{2}^{2}\tilde{q}_{1}^{2}$, ${ }M_{3}q_{2}\tilde{q}_{1}$, ${ }M_{6}q_{2}\tilde{q}_{1}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{5}q_{2}\tilde{q}_{1}$, ${ }M_{7}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{5}$, ${ }M_{5}M_{6}$, ${ }M_{3}M_{7}$, ${ }M_{6}M_{7}$, ${ }M_{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{3}$, ${ }M_{5}^{2}$, ${ }M_{2}M_{6}$, ${ }M_{5}M_{7}$, ${ }M_{7}^{2}$, ${ }\phi_{1}^{2}q_{2}\tilde{q}_{1}$, ${ }M_{2}M_{5}$, ${ }M_{2}M_{7}$, ${ }M_{3}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$ ${}$ -3 t^2.884 + 2*t^2.917 + 2*t^2.95 + t^2.983 + t^3.017 + t^4.293 + t^4.392 + t^4.425 + t^4.459 + t^4.492 + t^4.525 + 2*t^4.558 + t^4.591 + t^4.624 + t^5.768 + 2*t^5.801 + 4*t^5.834 + 4*t^5.867 + 5*t^5.901 + 3*t^5.934 - 3*t^6. - t^6.033 - t^6.066 - t^6.099 - t^6.133 - t^6.166 + t^7.177 + 2*t^7.21 + 2*t^7.243 + t^7.276 + 3*t^7.309 + 3*t^7.342 + 3*t^7.376 + 4*t^7.409 + 4*t^7.442 + 3*t^7.475 + 3*t^7.508 + 2*t^7.541 + 2*t^7.575 - t^7.608 - t^7.641 - t^7.674 + t^8.586 + t^8.652 + 3*t^8.685 + 5*t^8.718 + 7*t^8.751 + 8*t^8.784 + 8*t^8.818 + 8*t^8.851 - 5*t^8.917 - 7*t^8.95 - 6*t^8.983 - t^4.508/y - t^7.425/y - t^7.459/y + t^7.558/y + t^7.591/y + (2*t^8.801)/y + (3*t^8.834)/y + (5*t^8.867)/y + (4*t^8.901)/y + (4*t^8.934)/y + (2*t^8.967)/y - t^4.508*y - t^7.425*y - t^7.459*y + t^7.558*y + t^7.591*y + 2*t^8.801*y + 3*t^8.834*y + 5*t^8.867*y + 4*t^8.901*y + 4*t^8.934*y + 2*t^8.967*y t^2.884/g1^14 + (2*t^2.917)/g1^10 + (2*t^2.95)/g1^6 + t^2.983/g1^2 + g1^2*t^3.017 + t^4.293/g1^25 + t^4.392/g1^13 + t^4.425/g1^9 + t^4.459/g1^5 + t^4.492/g1 + g1^3*t^4.525 + 2*g1^7*t^4.558 + g1^11*t^4.591 + g1^15*t^4.624 + t^5.768/g1^28 + (2*t^5.801)/g1^24 + (4*t^5.834)/g1^20 + (4*t^5.867)/g1^16 + (5*t^5.901)/g1^12 + (3*t^5.934)/g1^8 - 3*t^6. - g1^4*t^6.033 - g1^8*t^6.066 - g1^12*t^6.099 - g1^16*t^6.133 - g1^20*t^6.166 + t^7.177/g1^39 + (2*t^7.21)/g1^35 + (2*t^7.243)/g1^31 + t^7.276/g1^27 + (3*t^7.309)/g1^23 + (3*t^7.342)/g1^19 + (3*t^7.376)/g1^15 + (4*t^7.409)/g1^11 + (4*t^7.442)/g1^7 + (3*t^7.475)/g1^3 + 3*g1*t^7.508 + 2*g1^5*t^7.541 + 2*g1^9*t^7.575 - g1^13*t^7.608 - g1^17*t^7.641 - g1^21*t^7.674 + t^8.586/g1^50 + t^8.652/g1^42 + (3*t^8.685)/g1^38 + (5*t^8.718)/g1^34 + (7*t^8.751)/g1^30 + (8*t^8.784)/g1^26 + (8*t^8.818)/g1^22 + (8*t^8.851)/g1^18 - (5*t^8.917)/g1^10 - (7*t^8.95)/g1^6 - (6*t^8.983)/g1^2 - (g1*t^4.508)/y - t^7.425/(g1^9*y) - t^7.459/(g1^5*y) + (g1^7*t^7.558)/y + (g1^11*t^7.591)/y + (2*t^8.801)/(g1^24*y) + (3*t^8.834)/(g1^20*y) + (5*t^8.867)/(g1^16*y) + (4*t^8.901)/(g1^12*y) + (4*t^8.934)/(g1^8*y) + (2*t^8.967)/(g1^4*y) - g1*t^4.508*y - (t^7.425*y)/g1^9 - (t^7.459*y)/g1^5 + g1^7*t^7.558*y + g1^11*t^7.591*y + (2*t^8.801*y)/g1^24 + (3*t^8.834*y)/g1^20 + (5*t^8.867*y)/g1^16 + (4*t^8.901*y)/g1^12 + (4*t^8.934*y)/g1^8 + (2*t^8.967*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55506 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}M_{5}$ + ${ }M_{1}M_{6}$ 0.6918 0.8495 0.8143 [M:[1.0137, 0.9973, 0.9863, 1.0082, 0.9918, 0.9863], q:[0.5041, 0.4822], qb:[0.4986, 0.5096], phi:[0.5014]] t^2.942 + 2*t^2.959 + t^2.975 + t^2.992 + t^3.008 + t^3.025 + t^4.397 + t^4.446 + t^4.463 + t^4.479 + t^4.496 + t^4.512 + 2*t^4.529 + t^4.545 + t^4.562 + t^5.885 + 2*t^5.901 + 3*t^5.918 + 2*t^5.934 + 3*t^5.951 + 3*t^5.967 + t^5.984 - 2*t^6. - t^4.504/y - t^4.504*y detail