Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57090 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6\phi_1q_2\tilde{q}_2$ + $ M_2M_7$ 0.6434 0.8452 0.7613 [X:[], M:[1.0, 0.9755, 0.7347, 1.0122, 0.7469, 0.7469, 1.0245], q:[0.7531, 0.2469], qb:[0.5122, 0.5122], phi:[0.4939]] [X:[], M:[[0], [-8], [-5], [4], [-1], [-1], [8]], q:[[1], [-1]], qb:[[4], [4]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_5$, $ M_6$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ \phi_1^2$, $ M_1$, $ M_4$, $ M_7$, $ q_1\tilde{q}_2$, $ M_3^2$, $ M_3M_5$, $ M_3M_6$, $ M_5^2$, $ M_5M_6$, $ M_6^2$, $ \phi_1q_1q_2$, $ M_3q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_2$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ M_3\phi_1^2$, $ M_1M_3$, $ M_5\phi_1^2$, $ M_6\phi_1^2$, $ M_3M_4$, $ M_1M_5$, $ M_1M_6$, $ \phi_1^2q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_2$, $ M_4M_5$, $ M_4M_6$, $ M_3M_7$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_5M_7$, $ M_6M_7$, $ M_4q_2\tilde{q}_1$, $ M_4q_2\tilde{q}_2$, $ M_7q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_2$, $ \phi_1^4$ $M_4\phi_1^2$, $ M_3q_1\tilde{q}_2$ -3 t^2.2 + 2*t^2.24 + 2*t^2.28 + t^2.96 + t^3. + t^3.04 + t^3.07 + t^3.8 + t^4.41 + 2*t^4.44 + 5*t^4.48 + 4*t^4.52 + 6*t^4.56 + t^5.17 + t^5.2 + 5*t^5.24 + 5*t^5.28 + 4*t^5.31 + 2*t^5.35 + t^5.93 - 3*t^6. + 3*t^6.04 + 3*t^6.07 + t^6.11 + t^6.15 + t^6.61 + 2*t^6.65 + 3*t^6.69 + 6*t^6.72 + 9*t^6.76 + 9*t^6.8 + 9*t^6.83 + t^6.87 + t^7.37 + t^7.41 + 4*t^7.44 + 4*t^7.48 + 12*t^7.52 + 11*t^7.56 + 8*t^7.59 + 6*t^7.63 + t^8.13 - 3*t^8.2 - 7*t^8.24 - 4*t^8.28 + 5*t^8.31 + 9*t^8.35 + 4*t^8.39 + 2*t^8.42 + t^8.82 + 2*t^8.85 + 4*t^8.89 + 5*t^8.93 + 5*t^8.96 - t^4.48/y - t^6.69/y - (2*t^6.72)/y + (2*t^7.44)/y + (3*t^7.48)/y + (4*t^7.52)/y + t^7.56/y + t^8.17/y + (3*t^8.2)/y + (7*t^8.24)/y + (6*t^8.28)/y + (4*t^8.31)/y + (2*t^8.35)/y - t^8.89/y - (2*t^8.93)/y - (2*t^8.96)/y - t^4.48*y - t^6.69*y - 2*t^6.72*y + 2*t^7.44*y + 3*t^7.48*y + 4*t^7.52*y + t^7.56*y + t^8.17*y + 3*t^8.2*y + 7*t^8.24*y + 6*t^8.28*y + 4*t^8.31*y + 2*t^8.35*y - t^8.89*y - 2*t^8.93*y - 2*t^8.96*y t^2.2/g1^5 + (2*t^2.24)/g1 + 2*g1^3*t^2.28 + t^2.96/g1^4 + t^3. + g1^4*t^3.04 + g1^8*t^3.07 + g1^5*t^3.8 + t^4.41/g1^10 + (2*t^4.44)/g1^6 + (5*t^4.48)/g1^2 + 4*g1^2*t^4.52 + 6*g1^6*t^4.56 + t^5.17/g1^9 + t^5.2/g1^5 + (5*t^5.24)/g1 + 5*g1^3*t^5.28 + 4*g1^7*t^5.31 + 2*g1^11*t^5.35 + t^5.93/g1^8 - 3*t^6. + 3*g1^4*t^6.04 + 3*g1^8*t^6.07 + g1^12*t^6.11 + g1^16*t^6.15 + t^6.61/g1^15 + (2*t^6.65)/g1^11 + (3*t^6.69)/g1^7 + (6*t^6.72)/g1^3 + 9*g1*t^6.76 + 9*g1^5*t^6.8 + 9*g1^9*t^6.83 + g1^13*t^6.87 + t^7.37/g1^14 + t^7.41/g1^10 + (4*t^7.44)/g1^6 + (4*t^7.48)/g1^2 + 12*g1^2*t^7.52 + 11*g1^6*t^7.56 + 8*g1^10*t^7.59 + 6*g1^14*t^7.63 + t^8.13/g1^13 - (3*t^8.2)/g1^5 - (7*t^8.24)/g1 - 4*g1^3*t^8.28 + 5*g1^7*t^8.31 + 9*g1^11*t^8.35 + 4*g1^15*t^8.39 + 2*g1^19*t^8.42 + t^8.82/g1^20 + (2*t^8.85)/g1^16 + (4*t^8.89)/g1^12 + (5*t^8.93)/g1^8 + (5*t^8.96)/g1^4 - t^4.48/(g1^2*y) - t^6.69/(g1^7*y) - (2*t^6.72)/(g1^3*y) + (2*t^7.44)/(g1^6*y) + (3*t^7.48)/(g1^2*y) + (4*g1^2*t^7.52)/y + (g1^6*t^7.56)/y + t^8.17/(g1^9*y) + (3*t^8.2)/(g1^5*y) + (7*t^8.24)/(g1*y) + (6*g1^3*t^8.28)/y + (4*g1^7*t^8.31)/y + (2*g1^11*t^8.35)/y - t^8.89/(g1^12*y) - (2*t^8.93)/(g1^8*y) - (2*t^8.96)/(g1^4*y) - (t^4.48*y)/g1^2 - (t^6.69*y)/g1^7 - (2*t^6.72*y)/g1^3 + (2*t^7.44*y)/g1^6 + (3*t^7.48*y)/g1^2 + 4*g1^2*t^7.52*y + g1^6*t^7.56*y + (t^8.17*y)/g1^9 + (3*t^8.2*y)/g1^5 + (7*t^8.24*y)/g1 + 6*g1^3*t^8.28*y + 4*g1^7*t^8.31*y + 2*g1^11*t^8.35*y - (t^8.89*y)/g1^12 - (2*t^8.93*y)/g1^8 - (2*t^8.96*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55490 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6\phi_1q_2\tilde{q}_2$ 0.6491 0.853 0.761 [X:[], M:[1.0, 0.9038, 0.6899, 1.0481, 0.738, 0.738], q:[0.762, 0.238], qb:[0.5481, 0.5481], phi:[0.476]] t^2.07 + 2*t^2.21 + 2*t^2.36 + t^2.71 + t^2.86 + t^3. + t^3.14 + t^3.93 + t^4.14 + 2*t^4.28 + 5*t^4.43 + 4*t^4.57 + 6*t^4.72 + t^4.78 + 3*t^4.93 + 3*t^5.07 + 5*t^5.21 + 4*t^5.36 + t^5.42 + 2*t^5.5 + t^5.57 + 2*t^5.71 + t^5.86 - 3*t^6. - t^4.43/y - t^4.43*y detail