Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57038 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1\phi_1^2$ + $ M_3M_4$ + $ M_4M_5$ + $ \phi_1\tilde{q}_1^2$ + $ M_6\phi_1q_2^2$ + $ M_7\phi_1\tilde{q}_2^2$ 0.7155 0.9254 0.7732 [X:[], M:[1.0567, 0.7167, 0.83, 1.17, 0.83, 0.6799, 0.7167], q:[0.5191, 0.4242], qb:[0.7642, 0.4058], phi:[0.4717]] [X:[], M:[[4], [-20], [-12], [12], [-12], [48], [-20]], q:[[19], [-23]], qb:[[1], [11]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ M_2$, $ M_7$, $ M_3$, $ M_5$, $ q_1\tilde{q}_2$, $ \phi_1^2$, $ M_1$, $ q_2\tilde{q}_1$, $ \phi_1q_2\tilde{q}_2$, $ M_6^2$, $ M_2M_6$, $ M_6M_7$, $ \phi_1q_1\tilde{q}_2$, $ \phi_1q_1q_2$, $ M_2^2$, $ M_2M_7$, $ M_7^2$, $ M_3M_6$, $ M_5M_6$, $ \phi_1q_1^2$, $ M_2M_3$, $ M_2M_5$, $ M_3M_7$, $ M_5M_7$, $ M_6q_1\tilde{q}_2$, $ M_6\phi_1^2$, $ M_7q_1\tilde{q}_2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ M_3^2$, $ M_3M_5$, $ M_5^2$, $ M_2\phi_1^2$, $ M_7\phi_1^2$, $ \phi_1q_2\tilde{q}_1$, $ M_1M_6$, $ \phi_1q_1\tilde{q}_1$, $ M_3q_1\tilde{q}_2$, $ M_5q_1\tilde{q}_2$, $ M_1M_2$, $ M_1M_7$, $ M_3\phi_1^2$, $ M_5\phi_1^2$, $ q_1^2\tilde{q}_2^2$, $ M_6q_2\tilde{q}_1$, $ \phi_1^2q_1\tilde{q}_2$, $ M_1M_3$, $ M_1M_5$, $ \phi_1^4$, $ M_2q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_1$, $ M_6\phi_1q_2\tilde{q}_2$ . -2 t^2.04 + 2*t^2.15 + 2*t^2.49 + t^2.77 + t^2.83 + t^3.17 + t^3.57 + t^3.91 + t^4.08 + 3*t^4.19 + t^4.25 + 3*t^4.3 + 3*t^4.53 + 4*t^4.64 + t^4.81 + t^4.87 + 2*t^4.92 + 5*t^4.98 + t^5.21 + 2*t^5.26 + 4*t^5.32 + t^5.55 + 2*t^5.6 + 2*t^5.66 + t^5.72 + t^5.94 - 2*t^6. + 3*t^6.06 + t^6.12 + 3*t^6.23 + 4*t^6.34 + 4*t^6.4 + 4*t^6.45 + 3*t^6.57 + 7*t^6.68 + 2*t^6.74 + 6*t^6.79 + t^6.85 + t^6.91 + 3*t^6.96 + 6*t^7.02 + 2*t^7.08 + 8*t^7.13 + t^7.25 + 3*t^7.3 + 4*t^7.36 + t^7.42 + 10*t^7.47 + t^7.59 + 2*t^7.64 + 2*t^7.7 + 4*t^7.75 + 7*t^7.81 + t^7.87 + t^7.98 - t^8.04 + 4*t^8.09 - 2*t^8.15 + t^8.16 + 3*t^8.21 + 3*t^8.27 + t^8.32 + 5*t^8.38 + 2*t^8.43 + 7*t^8.55 + 5*t^8.6 + 3*t^8.61 + 8*t^8.72 - 2*t^8.77 + 5*t^8.83 + 7*t^8.89 + 8*t^8.94 + t^8.95 - t^4.42/y - t^6.45/y - (2*t^6.57)/y - t^6.91/y + (2*t^7.19)/y + t^7.3/y + (2*t^7.53)/y + (4*t^7.64)/y + t^7.81/y + t^7.87/y + (3*t^7.92)/y + (3*t^7.98)/y + t^8.21/y + (4*t^8.26)/y + (4*t^8.32)/y + t^8.38/y - t^8.49/y + (2*t^8.66)/y - t^8.72/y + t^8.94/y - t^4.42*y - t^6.45*y - 2*t^6.57*y - t^6.91*y + 2*t^7.19*y + t^7.3*y + 2*t^7.53*y + 4*t^7.64*y + t^7.81*y + t^7.87*y + 3*t^7.92*y + 3*t^7.98*y + t^8.21*y + 4*t^8.26*y + 4*t^8.32*y + t^8.38*y - t^8.49*y + 2*t^8.66*y - t^8.72*y + t^8.94*y g1^48*t^2.04 + (2*t^2.15)/g1^20 + (2*t^2.49)/g1^12 + g1^30*t^2.77 + t^2.83/g1^4 + g1^4*t^3.17 + t^3.57/g1^22 + t^3.91/g1^14 + g1^96*t^4.08 + 3*g1^28*t^4.19 + t^4.25/g1^6 + (3*t^4.3)/g1^40 + 3*g1^36*t^4.53 + (4*t^4.64)/g1^32 + g1^78*t^4.81 + g1^44*t^4.87 + 2*g1^10*t^4.92 + (5*t^4.98)/g1^24 + g1^52*t^5.21 + 2*g1^18*t^5.26 + (4*t^5.32)/g1^16 + g1^60*t^5.55 + 2*g1^26*t^5.6 + (2*t^5.66)/g1^8 + t^5.72/g1^42 + g1^34*t^5.94 - 2*t^6. + (3*t^6.06)/g1^34 + g1^144*t^6.12 + 3*g1^76*t^6.23 + 4*g1^8*t^6.34 + (4*t^6.4)/g1^26 + (4*t^6.45)/g1^60 + 3*g1^84*t^6.57 + 7*g1^16*t^6.68 + (2*t^6.74)/g1^18 + (6*t^6.79)/g1^52 + g1^126*t^6.85 + g1^92*t^6.91 + 3*g1^58*t^6.96 + 6*g1^24*t^7.02 + (2*t^7.08)/g1^10 + (8*t^7.13)/g1^44 + g1^100*t^7.25 + 3*g1^66*t^7.3 + 4*g1^32*t^7.36 + t^7.42/g1^2 + (10*t^7.47)/g1^36 + g1^108*t^7.59 + 2*g1^74*t^7.64 + 2*g1^40*t^7.7 + 4*g1^6*t^7.75 + (7*t^7.81)/g1^28 + t^7.87/g1^62 + g1^82*t^7.98 - g1^48*t^8.04 + 4*g1^14*t^8.09 - (2*t^8.15)/g1^20 + g1^192*t^8.16 + (3*t^8.21)/g1^54 + 3*g1^124*t^8.27 + g1^90*t^8.32 + 5*g1^56*t^8.38 + 2*g1^22*t^8.43 + (7*t^8.55)/g1^46 + (5*t^8.6)/g1^80 + 3*g1^132*t^8.61 + 8*g1^64*t^8.72 - 2*g1^30*t^8.77 + (5*t^8.83)/g1^4 + (6*t^8.89)/g1^38 + g1^174*t^8.89 + (8*t^8.94)/g1^72 + g1^140*t^8.95 - t^4.42/(g1^2*y) - (g1^46*t^6.45)/y - (2*t^6.57)/(g1^22*y) - t^6.91/(g1^14*y) + (2*g1^28*t^7.19)/y + t^7.3/(g1^40*y) + (2*g1^36*t^7.53)/y + (4*t^7.64)/(g1^32*y) + (g1^78*t^7.81)/y + (g1^44*t^7.87)/y + (3*g1^10*t^7.92)/y + (3*t^7.98)/(g1^24*y) + (g1^52*t^8.21)/y + (4*g1^18*t^8.26)/y + (4*t^8.32)/(g1^16*y) + t^8.38/(g1^50*y) - (g1^94*t^8.49)/y + (2*t^8.66)/(g1^8*y) - t^8.72/(g1^42*y) + (g1^34*t^8.94)/y - (t^4.42*y)/g1^2 - g1^46*t^6.45*y - (2*t^6.57*y)/g1^22 - (t^6.91*y)/g1^14 + 2*g1^28*t^7.19*y + (t^7.3*y)/g1^40 + 2*g1^36*t^7.53*y + (4*t^7.64*y)/g1^32 + g1^78*t^7.81*y + g1^44*t^7.87*y + 3*g1^10*t^7.92*y + (3*t^7.98*y)/g1^24 + g1^52*t^8.21*y + 4*g1^18*t^8.26*y + (4*t^8.32*y)/g1^16 + (t^8.38*y)/g1^50 - g1^94*t^8.49*y + (2*t^8.66*y)/g1^8 - (t^8.72*y)/g1^42 + g1^34*t^8.94*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55485 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3\tilde{q}_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1\phi_1^2$ + $ M_3M_4$ + $ M_4M_5$ + $ \phi_1\tilde{q}_1^2$ + $ M_6\phi_1q_2^2$ 0.6954 0.8879 0.7832 [X:[], M:[1.056, 0.7198, 0.8319, 1.1681, 0.8319, 0.6725], q:[0.5162, 0.4278], qb:[0.764, 0.4041], phi:[0.472]] t^2.02 + t^2.16 + 2*t^2.5 + t^2.76 + t^2.83 + t^3.17 + t^3.58 + t^3.84 + t^3.91 + t^4.03 + 2*t^4.18 + t^4.25 + t^4.32 + 3*t^4.51 + 2*t^4.66 + t^4.78 + t^4.85 + t^4.92 + 4*t^4.99 + t^5.19 + 2*t^5.26 + 3*t^5.33 + t^5.52 + 2*t^5.59 + 2*t^5.66 + t^5.86 + t^5.93 - t^6. - t^4.42/y - t^4.42*y detail