Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57034 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_5q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_4\phi_1q_1^2$ + $ M_6\phi_1q_2^2$ + $ M_1M_7$ 0.7023 0.8898 0.7893 [X:[], M:[1.1722, 0.9666, 0.8278, 0.7815, 0.9203, 0.689, 0.8278], q:[0.3907, 0.437], qb:[0.6427, 0.7815], phi:[0.437]] [X:[], M:[[3], [-18], [-3], [2], [-13], [12], [-3]], q:[[1], [-4]], qb:[[17], [2]], phi:[[-4]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_6$, $ M_4$, $ M_3$, $ M_7$, $ \phi_1^2$, $ M_5$, $ M_2$, $ \phi_1q_1^2$, $ \phi_1q_1q_2$, $ M_6^2$, $ \tilde{q}_1\tilde{q}_2$, $ M_4M_6$, $ \phi_1q_1\tilde{q}_1$, $ M_3M_6$, $ M_6M_7$, $ \phi_1q_2\tilde{q}_1$, $ M_4^2$, $ M_6\phi_1^2$, $ M_3M_4$, $ M_5M_6$, $ M_4M_7$, $ \phi_1q_1\tilde{q}_2$, $ M_3^2$, $ M_2M_6$, $ M_3M_7$, $ M_7^2$, $ M_4\phi_1^2$, $ \phi_1q_2\tilde{q}_2$, $ M_4M_5$, $ M_3\phi_1^2$, $ M_7\phi_1^2$, $ \phi_1\tilde{q}_1^2$, $ M_2M_4$, $ M_3M_5$, $ M_5M_7$, $ \phi_1^4$, $ M_2M_3$, $ M_2M_7$, $ M_5\phi_1^2$, $ M_5^2$, $ M_2\phi_1^2$, $ M_2M_5$, $ M_6\phi_1q_1^2$, $ M_2^2$ . -2 t^2.07 + t^2.34 + 2*t^2.48 + t^2.62 + t^2.76 + t^2.9 + t^3.66 + t^3.79 + t^4.13 + t^4.27 + 2*t^4.41 + 3*t^4.55 + 2*t^4.69 + 3*t^4.83 + 5*t^4.97 + 3*t^5.11 + t^5.17 + 3*t^5.24 + 2*t^5.38 + 2*t^5.52 + t^5.66 + t^5.72 + t^5.8 - 2*t^6. + t^6.14 + t^6.2 + 2*t^6.28 + t^6.34 + t^6.42 + 2*t^6.48 + t^6.56 + 3*t^6.62 + 3*t^6.76 + 5*t^6.89 + 7*t^7.03 + 5*t^7.17 + t^7.23 + 6*t^7.31 + 9*t^7.45 + t^7.51 + 8*t^7.59 + t^7.65 + 6*t^7.73 + t^7.79 + 6*t^7.87 - t^7.93 + 4*t^8.01 - 2*t^8.07 + 4*t^8.14 - t^8.21 + t^8.27 + 3*t^8.28 - 3*t^8.34 + t^8.41 + 2*t^8.42 - 5*t^8.48 + 2*t^8.55 + t^8.56 - 2*t^8.62 + 3*t^8.68 + t^8.7 - t^8.76 + 4*t^8.82 - t^8.9 + 5*t^8.96 - t^4.31/y - t^6.38/y - t^6.66/y - t^6.79/y - t^6.93/y - t^7.07/y - t^7.21/y + (2*t^7.41)/y + (3*t^7.55)/y + (2*t^7.69)/y + (4*t^7.83)/y + (4*t^7.97)/y + (3*t^8.11)/y + (4*t^8.24)/y + (3*t^8.38)/y - t^8.44/y + t^8.52/y + t^8.66/y - t^4.31*y - t^6.38*y - t^6.66*y - t^6.79*y - t^6.93*y - t^7.07*y - t^7.21*y + 2*t^7.41*y + 3*t^7.55*y + 2*t^7.69*y + 4*t^7.83*y + 4*t^7.97*y + 3*t^8.11*y + 4*t^8.24*y + 3*t^8.38*y - t^8.44*y + t^8.52*y + t^8.66*y g1^12*t^2.07 + g1^2*t^2.34 + (2*t^2.48)/g1^3 + t^2.62/g1^8 + t^2.76/g1^13 + t^2.9/g1^18 + t^3.66/g1^2 + t^3.79/g1^7 + g1^24*t^4.13 + g1^19*t^4.27 + 2*g1^14*t^4.41 + 3*g1^9*t^4.55 + 2*g1^4*t^4.69 + (3*t^4.83)/g1 + (5*t^4.97)/g1^6 + (3*t^5.11)/g1^11 + g1^30*t^5.17 + (3*t^5.24)/g1^16 + (2*t^5.38)/g1^21 + (2*t^5.52)/g1^26 + t^5.66/g1^31 + g1^10*t^5.72 + t^5.8/g1^36 - 2*t^6. + t^6.14/g1^5 + g1^36*t^6.2 + (2*t^6.28)/g1^10 + g1^31*t^6.34 + t^6.42/g1^15 + 2*g1^26*t^6.48 + t^6.56/g1^20 + 3*g1^21*t^6.62 + 3*g1^16*t^6.76 + 5*g1^11*t^6.89 + 7*g1^6*t^7.03 + 5*g1*t^7.17 + g1^42*t^7.23 + (6*t^7.31)/g1^4 + (9*t^7.45)/g1^9 + g1^32*t^7.51 + (8*t^7.59)/g1^14 + g1^27*t^7.65 + (6*t^7.73)/g1^19 + g1^22*t^7.79 + (6*t^7.87)/g1^24 - g1^17*t^7.93 + (4*t^8.01)/g1^29 - 2*g1^12*t^8.07 + (4*t^8.14)/g1^34 - g1^7*t^8.21 + g1^48*t^8.27 + (3*t^8.28)/g1^39 - 3*g1^2*t^8.34 + g1^43*t^8.41 + (2*t^8.42)/g1^44 - (5*t^8.48)/g1^3 + 2*g1^38*t^8.55 + t^8.56/g1^49 - (2*t^8.62)/g1^8 + 3*g1^33*t^8.68 + t^8.7/g1^54 - t^8.76/g1^13 + 4*g1^28*t^8.82 - t^8.9/g1^18 + 5*g1^23*t^8.96 - t^4.31/(g1^4*y) - (g1^8*t^6.38)/y - t^6.66/(g1^2*y) - t^6.79/(g1^7*y) - t^6.93/(g1^12*y) - t^7.07/(g1^17*y) - t^7.21/(g1^22*y) + (2*g1^14*t^7.41)/y + (3*g1^9*t^7.55)/y + (2*g1^4*t^7.69)/y + (4*t^7.83)/(g1*y) + (4*t^7.97)/(g1^6*y) + (3*t^8.11)/(g1^11*y) + (4*t^8.24)/(g1^16*y) + (3*t^8.38)/(g1^21*y) - (g1^20*t^8.44)/y + t^8.52/(g1^26*y) + t^8.66/(g1^31*y) - (t^4.31*y)/g1^4 - g1^8*t^6.38*y - (t^6.66*y)/g1^2 - (t^6.79*y)/g1^7 - (t^6.93*y)/g1^12 - (t^7.07*y)/g1^17 - (t^7.21*y)/g1^22 + 2*g1^14*t^7.41*y + 3*g1^9*t^7.55*y + 2*g1^4*t^7.69*y + (4*t^7.83*y)/g1 + (4*t^7.97*y)/g1^6 + (3*t^8.11*y)/g1^11 + (4*t^8.24*y)/g1^16 + (3*t^8.38*y)/g1^21 - g1^20*t^8.44*y + (t^8.52*y)/g1^26 + (t^8.66*y)/g1^31


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55418 SU2adj1nf2 $M_1q_1q_2$ + $ M_2q_1\tilde{q}_1$ + $ M_3q_1\tilde{q}_2$ + $ M_4q_2\tilde{q}_2$ + $ M_1M_3$ + $ M_5q_2\tilde{q}_1$ + $ \phi_1\tilde{q}_2^2$ + $ M_4\phi_1q_1^2$ + $ M_6\phi_1q_2^2$ 0.6877 0.8645 0.7955 [X:[], M:[1.1711, 0.9733, 0.8289, 0.7807, 0.9252, 0.6844], q:[0.3904, 0.4385], qb:[0.6363, 0.7807], phi:[0.4385]] t^2.05 + t^2.34 + t^2.49 + t^2.63 + t^2.78 + t^2.92 + t^3.51 + t^3.66 + t^3.8 + t^4.11 + t^4.25 + 2*t^4.4 + 2*t^4.54 + 2*t^4.68 + 2*t^4.83 + 3*t^4.97 + 2*t^5.12 + t^5.13 + 2*t^5.26 + t^5.41 + 2*t^5.55 + t^5.57 + t^5.7 + t^5.71 + t^5.84 + t^5.86 - t^6. - t^4.32/y - t^4.32*y detail