Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
57021 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6q_1\tilde{q}_2$ + $ M_4M_7$ 0.6555 0.8676 0.7556 [X:[], M:[1.0, 0.8727, 0.6705, 1.0636, 0.7341, 0.6705, 0.9364], q:[0.7659, 0.2341], qb:[0.5636, 0.5636], phi:[0.4682]] [X:[], M:[[0], [-8], [-5], [4], [-1], [-5], [-4]], q:[[1], [-1]], qb:[[4], [4]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
$M_3$, $ M_6$, $ M_5$, $ q_2\tilde{q}_1$, $ q_2\tilde{q}_2$, $ M_2$, $ M_7$, $ \phi_1^2$, $ M_1$, $ \phi_1q_2\tilde{q}_2$, $ M_3^2$, $ M_3M_6$, $ M_6^2$, $ M_3M_5$, $ M_5M_6$, $ M_5^2$, $ \phi_1q_1q_2$, $ M_3q_2\tilde{q}_1$, $ M_6q_2\tilde{q}_1$, $ M_3q_2\tilde{q}_2$, $ M_6q_2\tilde{q}_2$, $ M_5q_2\tilde{q}_1$, $ M_5q_2\tilde{q}_2$, $ M_2M_3$, $ M_2M_6$, $ \phi_1\tilde{q}_1^2$, $ q_2^2\tilde{q}_1^2$, $ \phi_1\tilde{q}_1\tilde{q}_2$, $ q_2^2\tilde{q}_1\tilde{q}_2$, $ \phi_1\tilde{q}_2^2$, $ q_2^2\tilde{q}_2^2$, $ M_2M_5$, $ M_3M_7$, $ M_6M_7$, $ M_3\phi_1^2$, $ M_6\phi_1^2$, $ M_1M_3$, $ M_1M_6$, $ M_5M_7$, $ M_5\phi_1^2$, $ M_1M_5$, $ M_7q_2\tilde{q}_1$, $ \phi_1^2q_2\tilde{q}_1$, $ M_7q_2\tilde{q}_2$, $ \phi_1^2q_2\tilde{q}_2$, $ M_2^2$, $ \phi_1q_1\tilde{q}_1$, $ \phi_1q_1\tilde{q}_2$, $ M_2M_7$, $ M_2\phi_1^2$, $ M_1M_2$, $ M_7^2$, $ M_7\phi_1^2$, $ \phi_1^4$, $ M_1M_7$, $ M_1\phi_1^2$, $ M_3\phi_1q_2\tilde{q}_2$, $ M_6\phi_1q_2\tilde{q}_2$ . -4 2*t^2.01 + t^2.2 + 2*t^2.39 + t^2.62 + 2*t^2.81 + t^3. + t^3.8 + 3*t^4.02 + 2*t^4.21 + 5*t^4.4 + 2*t^4.6 + 2*t^4.63 + 6*t^4.79 + 5*t^4.82 + 4*t^5.01 + 5*t^5.2 + t^5.24 + 2*t^5.39 + 2*t^5.43 + 4*t^5.62 + 3*t^5.81 - 4*t^6. + 4*t^6.03 + t^6.19 + 3*t^6.23 - t^6.38 + 7*t^6.42 + 5*t^6.61 + 3*t^6.64 + 11*t^6.8 + 8*t^6.83 + 2*t^6.99 + 8*t^7.02 + 8*t^7.18 + 12*t^7.21 + 2*t^7.25 + 7*t^7.4 + 5*t^7.44 + 10*t^7.6 + 10*t^7.63 + 2*t^7.79 + 9*t^7.82 + t^7.85 - 3*t^7.98 - t^8.01 + 7*t^8.05 + 8*t^8.24 - 13*t^8.39 + 14*t^8.43 - t^8.58 + 6*t^8.62 + 4*t^8.65 - 4*t^8.77 + 5*t^8.81 + 11*t^8.84 - t^4.4/y - (2*t^6.42)/y - t^6.61/y + t^7.21/y + (4*t^7.4)/y + (3*t^7.6)/y + (2*t^7.63)/y + (2*t^7.79)/y + (5*t^7.82)/y + (6*t^8.01)/y + (6*t^8.2)/y + (4*t^8.39)/y - t^8.43/y + (3*t^8.81)/y - t^4.4*y - 2*t^6.42*y - t^6.61*y + t^7.21*y + 4*t^7.4*y + 3*t^7.6*y + 2*t^7.63*y + 2*t^7.79*y + 5*t^7.82*y + 6*t^8.01*y + 6*t^8.2*y + 4*t^8.39*y - t^8.43*y + 3*t^8.81*y (2*t^2.01)/g1^5 + t^2.2/g1 + 2*g1^3*t^2.39 + t^2.62/g1^8 + (2*t^2.81)/g1^4 + t^3. + g1*t^3.8 + (3*t^4.02)/g1^10 + (2*t^4.21)/g1^6 + (5*t^4.4)/g1^2 + 2*g1^2*t^4.6 + (2*t^4.63)/g1^13 + 6*g1^6*t^4.79 + (5*t^4.82)/g1^9 + (4*t^5.01)/g1^5 + (5*t^5.2)/g1 + t^5.24/g1^16 + 2*g1^3*t^5.39 + (2*t^5.43)/g1^12 + (4*t^5.62)/g1^8 + (3*t^5.81)/g1^4 - 4*t^6. + (4*t^6.03)/g1^15 + g1^4*t^6.19 + (3*t^6.23)/g1^11 - g1^8*t^6.38 + (7*t^6.42)/g1^7 + (5*t^6.61)/g1^3 + (3*t^6.64)/g1^18 + 11*g1*t^6.8 + (8*t^6.83)/g1^14 + 2*g1^5*t^6.99 + (8*t^7.02)/g1^10 + 8*g1^9*t^7.18 + (12*t^7.21)/g1^6 + (2*t^7.25)/g1^21 + (7*t^7.4)/g1^2 + (5*t^7.44)/g1^17 + 10*g1^2*t^7.6 + (10*t^7.63)/g1^13 + 2*g1^6*t^7.79 + (9*t^7.82)/g1^9 + t^7.85/g1^24 - 3*g1^10*t^7.98 - t^8.01/g1^5 + (7*t^8.05)/g1^20 + (8*t^8.24)/g1^16 - 13*g1^3*t^8.39 + (14*t^8.43)/g1^12 - g1^7*t^8.58 + (6*t^8.62)/g1^8 + (4*t^8.65)/g1^23 - 4*g1^11*t^8.77 + (5*t^8.81)/g1^4 + (11*t^8.84)/g1^19 - t^4.4/(g1^2*y) - (2*t^6.42)/(g1^7*y) - t^6.61/(g1^3*y) + t^7.21/(g1^6*y) + (4*t^7.4)/(g1^2*y) + (3*g1^2*t^7.6)/y + (2*t^7.63)/(g1^13*y) + (2*g1^6*t^7.79)/y + (5*t^7.82)/(g1^9*y) + (6*t^8.01)/(g1^5*y) + (6*t^8.2)/(g1*y) + (4*g1^3*t^8.39)/y - t^8.43/(g1^12*y) + (3*t^8.81)/(g1^4*y) - (t^4.4*y)/g1^2 - (2*t^6.42*y)/g1^7 - (t^6.61*y)/g1^3 + (t^7.21*y)/g1^6 + (4*t^7.4*y)/g1^2 + 3*g1^2*t^7.6*y + (2*t^7.63*y)/g1^13 + 2*g1^6*t^7.79*y + (5*t^7.82*y)/g1^9 + (6*t^8.01*y)/g1^5 + (6*t^8.2*y)/g1 + 4*g1^3*t^8.39*y - (t^8.43*y)/g1^12 + (3*t^8.81*y)/g1^4


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55472 SU2adj1nf2 $M_1q_1q_2$ + $ \phi_1q_1^2$ + $ M_2\tilde{q}_1\tilde{q}_2$ + $ M_1^2$ + $ M_3q_1\tilde{q}_1$ + $ M_4\phi_1q_2^2$ + $ M_5\phi_1q_2\tilde{q}_1$ + $ M_5\phi_1q_2\tilde{q}_2$ + $ M_6q_1\tilde{q}_2$ 0.6503 0.8573 0.7586 [X:[], M:[1.0, 0.9016, 0.6885, 1.0492, 0.7377, 0.6885], q:[0.7623, 0.2377], qb:[0.5492, 0.5492], phi:[0.4754]] 2*t^2.07 + t^2.21 + 2*t^2.36 + t^2.7 + t^2.85 + t^3. + t^3.15 + t^3.79 + 3*t^4.13 + 2*t^4.28 + 5*t^4.43 + 2*t^4.57 + 6*t^4.72 + 2*t^4.77 + 3*t^4.92 + 3*t^5.07 + 5*t^5.21 + 3*t^5.36 + t^5.41 + 2*t^5.51 + t^5.56 + 2*t^5.7 + 3*t^5.85 - 3*t^6. - t^4.43/y - t^4.43*y detail