Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56991 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{2}^{2}$ + ${ }M_{6}\phi_{1}^{2}$ + ${ }M_{7}\phi_{1}q_{1}^{2}$ + ${ }M_{1}M_{8}$ 0.7333 0.912 0.804 [M:[1.0053, 1.0, 0.9947, 0.8598, 0.8651, 1.0701, 0.6753, 0.9947], q:[0.4299, 0.5648], qb:[0.5701, 0.5754], phi:[0.4649]] [M:[[-2, 1], [0, 0], [2, -1], [-4, 0], [-6, 1], [2, 0], [5, 0], [2, -1]], q:[[-2, 0], [4, -1]], qb:[[2, 0], [0, 1]], phi:[[-1, 0]]] 2
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{7}$, ${ }M_{4}$, ${ }M_{5}$, ${ }M_{3}$, ${ }M_{8}$, ${ }M_{2}$, ${ }M_{6}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{7}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{4}M_{7}$, ${ }M_{5}M_{7}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{7}M_{8}$, ${ }M_{2}M_{7}$, ${ }M_{4}^{2}$, ${ }M_{4}M_{5}$, ${ }M_{5}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{7}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{3}M_{4}$, ${ }M_{4}M_{8}$, ${ }M_{2}M_{4}$, ${ }M_{3}M_{5}$, ${ }M_{5}M_{8}$, ${ }M_{4}M_{6}$, ${ }M_{5}M_{6}$, ${ }M_{3}^{2}$, ${ }M_{3}M_{8}$, ${ }M_{8}^{2}$ ${}$ -3 t^2.026 + t^2.579 + t^2.595 + 2*t^2.984 + t^3. + t^3.21 + t^3.437 + t^4.052 + t^4.379 + t^4.395 + t^4.411 + t^4.605 + t^4.621 + t^4.784 + t^4.8 + 2*t^4.816 + t^4.831 + t^4.847 + 2*t^5.01 + t^5.026 + t^5.159 + t^5.175 + t^5.19 + t^5.236 + t^5.462 + t^5.563 + 2*t^5.579 + t^5.79 + t^5.806 + 2*t^5.968 - 3*t^6. - t^6.016 + t^6.078 + 2*t^6.194 + t^6.21 + 2*t^6.421 + t^6.437 + t^6.631 + 2*t^6.647 + t^6.81 + t^6.825 + 2*t^6.841 + t^6.857 + 2*t^6.873 + t^6.974 + t^6.99 + t^7.006 + 2*t^7.036 + t^7.052 + t^7.2 + t^7.216 + t^7.262 + 2*t^7.363 + 2*t^7.379 + 2*t^7.395 + t^7.411 + t^7.427 + t^7.442 + t^7.488 + t^7.589 + 2*t^7.605 + t^7.738 + t^7.754 + 2*t^7.768 + t^7.77 + 2*t^7.784 + t^7.786 + 2*t^7.8 + 2*t^7.816 + 2*t^7.831 + t^7.847 + 2*t^7.994 - 3*t^8.026 - t^8.042 + t^8.103 + t^8.143 + t^8.159 + t^8.175 + 2*t^8.22 + t^8.236 + t^8.252 + t^8.268 + t^8.284 + t^8.369 + t^8.385 + t^8.401 + 2*t^8.447 + t^8.462 + t^8.548 - 4*t^8.579 - 4*t^8.595 - t^8.611 + t^8.657 + 2*t^8.673 + t^8.774 + 2*t^8.79 + t^8.835 + t^8.851 + 2*t^8.867 + t^8.883 + 2*t^8.899 + 2*t^8.952 - t^8.968 - 7*t^8.984 - t^4.395/y - t^6.421/y - t^6.974/y - t^6.99/y - t^7.379/y + t^7.411/y + t^7.605/y + t^7.621/y + t^7.8/y + t^7.816/y + (2*t^8.01)/y + t^8.026/y + t^8.175/y + t^8.236/y + t^8.369/y - t^8.447/y + t^8.462/y + (2*t^8.563)/y + (3*t^8.579)/y + t^8.595/y + t^8.79/y + t^8.806/y + t^8.968/y + (2*t^8.984)/y - t^4.395*y - t^6.421*y - t^6.974*y - t^6.99*y - t^7.379*y + t^7.411*y + t^7.605*y + t^7.621*y + t^7.8*y + t^7.816*y + 2*t^8.01*y + t^8.026*y + t^8.175*y + t^8.236*y + t^8.369*y - t^8.447*y + t^8.462*y + 2*t^8.563*y + 3*t^8.579*y + t^8.595*y + t^8.79*y + t^8.806*y + t^8.968*y + 2*t^8.984*y g1^5*t^2.026 + t^2.579/g1^4 + (g2*t^2.595)/g1^6 + (2*g1^2*t^2.984)/g2 + t^3. + g1^2*t^3.21 + g1^2*g2*t^3.437 + g1^10*t^4.052 + (g1*t^4.379)/g2 + t^4.395/g1 + (g2*t^4.411)/g1^3 + g1*t^4.605 + (g2*t^4.621)/g1 + (g1^7*t^4.784)/g2^2 + (g1^5*t^4.8)/g2 + 2*g1^3*t^4.816 + g1*g2*t^4.831 + (g2^2*t^4.847)/g1 + (2*g1^7*t^5.01)/g2 + g1^5*t^5.026 + t^5.159/g1^8 + (g2*t^5.175)/g1^10 + (g2^2*t^5.19)/g1^12 + g1^7*t^5.236 + g1^7*g2*t^5.462 + t^5.563/(g1^2*g2) + (2*t^5.579)/g1^4 + t^5.79/g1^2 + (g2*t^5.806)/g1^4 + (2*g1^4*t^5.968)/g2^2 - 3*t^6. - (g2*t^6.016)/g1^2 + g1^15*t^6.078 + (2*g1^4*t^6.194)/g2 + g1^2*t^6.21 + 2*g1^4*t^6.421 + g1^2*g2*t^6.437 + g1^6*t^6.631 + 2*g1^4*g2*t^6.647 + (g1^12*t^6.81)/g2^2 + (g1^10*t^6.825)/g2 + 2*g1^8*t^6.841 + g1^6*g2*t^6.857 + 2*g1^4*g2^2*t^6.873 + t^6.974/g1^5 + (g2*t^6.99)/g1^7 + (g2^2*t^7.006)/g1^9 + (2*g1^12*t^7.036)/g2 + g1^10*t^7.052 + (g2*t^7.2)/g1^5 + (g2^2*t^7.216)/g1^7 + g1^12*t^7.262 + (2*g1^3*t^7.363)/g2^2 + (2*g1*t^7.379)/g2 + (2*t^7.395)/g1 + (g2*t^7.411)/g1^3 + (g2^2*t^7.427)/g1^5 + (g2^3*t^7.442)/g1^7 + g1^12*g2*t^7.488 + (g1^3*t^7.589)/g2 + 2*g1*t^7.605 + t^7.738/g1^12 + (g2*t^7.754)/g1^14 + (2*g1^9*t^7.768)/g2^3 + (g2^2*t^7.77)/g1^16 + (2*g1^7*t^7.784)/g2^2 + (g2^3*t^7.786)/g1^18 + (2*g1^5*t^7.8)/g2 + 2*g1^3*t^7.816 + 2*g1*g2*t^7.831 + (g2^2*t^7.847)/g1 + (2*g1^9*t^7.994)/g2^2 - 3*g1^5*t^8.026 - g1^3*g2*t^8.042 + g1^20*t^8.103 + t^8.143/(g1^6*g2) + t^8.159/g1^8 + (g2*t^8.175)/g1^10 + (2*g1^9*t^8.22)/g2 + g1^7*t^8.236 + g1^5*g2*t^8.252 + g1^3*g2^2*t^8.268 + g1*g2^3*t^8.284 + t^8.369/g1^6 + (g2*t^8.385)/g1^8 + (g2^2*t^8.401)/g1^10 + 2*g1^9*t^8.447 + g1^7*g2*t^8.462 + t^8.548/g2^2 - (4*t^8.579)/g1^4 - (4*g2*t^8.595)/g1^6 - (g2^2*t^8.611)/g1^8 + g1^11*t^8.657 + 2*g1^9*g2*t^8.673 + t^8.774/g2 + (2*t^8.79)/g1^2 + (g1^17*t^8.835)/g2^2 + (g1^15*t^8.851)/g2 + 2*g1^13*t^8.867 + g1^11*g2*t^8.883 + 2*g1^9*g2^2*t^8.899 + (2*g1^6*t^8.952)/g2^3 - (g1^4*t^8.968)/g2^2 - (7*g1^2*t^8.984)/g2 - t^4.395/(g1*y) - (g1^4*t^6.421)/y - t^6.974/(g1^5*y) - (g2*t^6.99)/(g1^7*y) - (g1*t^7.379)/(g2*y) + (g2*t^7.411)/(g1^3*y) + (g1*t^7.605)/y + (g2*t^7.621)/(g1*y) + (g1^5*t^7.8)/(g2*y) + (g1^3*t^7.816)/y + (2*g1^7*t^8.01)/(g2*y) + (g1^5*t^8.026)/y + (g2*t^8.175)/(g1^10*y) + (g1^7*t^8.236)/y + t^8.369/(g1^6*y) - (g1^9*t^8.447)/y + (g1^7*g2*t^8.462)/y + (2*t^8.563)/(g1^2*g2*y) + (3*t^8.579)/(g1^4*y) + (g2*t^8.595)/(g1^6*y) + t^8.79/(g1^2*y) + (g2*t^8.806)/(g1^4*y) + (g1^4*t^8.968)/(g2^2*y) + (2*g1^2*t^8.984)/(g2*y) - (t^4.395*y)/g1 - g1^4*t^6.421*y - (t^6.974*y)/g1^5 - (g2*t^6.99*y)/g1^7 - (g1*t^7.379*y)/g2 + (g2*t^7.411*y)/g1^3 + g1*t^7.605*y + (g2*t^7.621*y)/g1 + (g1^5*t^7.8*y)/g2 + g1^3*t^7.816*y + (2*g1^7*t^8.01*y)/g2 + g1^5*t^8.026*y + (g2*t^8.175*y)/g1^10 + g1^7*t^8.236*y + (t^8.369*y)/g1^6 - g1^9*t^8.447*y + g1^7*g2*t^8.462*y + (2*t^8.563*y)/(g1^2*g2) + (3*t^8.579*y)/g1^4 + (g2*t^8.595*y)/g1^6 + (t^8.79*y)/g1^2 + (g2*t^8.806*y)/g1^4 + (g1^4*t^8.968*y)/g2^2 + (2*g1^2*t^8.984*y)/g2


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55379 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{2}^{2}$ + ${ }M_{6}\phi_{1}^{2}$ + ${ }M_{7}\phi_{1}q_{1}^{2}$ 0.7342 0.9146 0.8027 [M:[0.9754, 1.0, 1.0246, 0.8619, 0.8374, 1.069, 0.6726], q:[0.431, 0.5936], qb:[0.569, 0.5445], phi:[0.4655]] t^2.018 + t^2.512 + t^2.586 + t^2.926 + t^3. + t^3.074 + t^3.207 + t^3.341 + t^4.036 + t^4.323 + t^4.396 + t^4.47 + t^4.53 + t^4.604 + t^4.663 + t^4.737 + 2*t^4.811 + t^4.884 + t^4.944 + t^4.958 + t^5.018 + t^5.024 + t^5.092 + t^5.098 + t^5.171 + t^5.225 + t^5.358 + t^5.438 + t^5.512 + t^5.586 + t^5.719 + t^5.793 + t^5.853 - 2*t^6. - t^4.396/y - t^4.396*y detail