Chosen Fixed Point
Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.
# | Theory | Superpotential | Central charge $a$ | Central charge $c$ | Ratio $a/c$ | Matter field: $R$-charge | U(1) part of $F_{UV}$ | Rank of $F_{UV}$ | Rational |
---|---|---|---|---|---|---|---|---|---|
56958 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ + ${ }M_{3}M_{7}$ | 0.6916 | 0.8487 | 0.8149 | [M:[0.991, 0.9982, 1.009, 1.0054, 1.0018, 0.9946, 0.991], q:[0.5027, 0.5063], qb:[0.4991, 0.4883], phi:[0.5009]] | [M:[[10], [2], [-10], [-6], [-2], [6], [10]], q:[[-3], [-7]], qb:[[1], [13]], phi:[[-1]]] | 1 |
Relevant Operators | Marginal Operators | $n_{marginal}$$-$$|F_{IR}|$ | Superconformal Index | Refined index |
---|---|---|---|---|
${}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}$, ${ }M_{7}$, ${ }M_{6}$, ${ }M_{5}$, ${ }\phi_{1}^{2}$, ${ }M_{4}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}^{2}$, ${ }\tilde{q}_{1}^{2}\tilde{q}_{2}^{2}$, ${ }M_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{7}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}^{2}$, ${ }M_{1}M_{7}$, ${ }M_{7}^{2}$, ${ }M_{6}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{6}$, ${ }M_{6}M_{7}$, ${ }M_{6}^{2}$, ${ }M_{5}\tilde{q}_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{5}$, ${ }M_{5}M_{7}$, ${ }M_{1}\phi_{1}^{2}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{4}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{1}M_{4}$, ${ }M_{5}M_{6}$, ${ }M_{4}M_{7}$, ${ }M_{6}\phi_{1}^{2}$ | ${}$ | -3 | t^2.962 + 2*t^2.973 + t^2.984 + 2*t^3.005 + t^3.016 + t^4.433 + t^4.465 + t^4.476 + t^4.487 + t^4.497 + t^4.508 + 2*t^4.519 + t^4.53 + t^4.54 + t^5.924 + 2*t^5.935 + 3*t^5.946 + t^5.957 + 2*t^5.968 + 4*t^5.978 + t^5.989 - 3*t^6. + t^6.011 + t^6.022 - t^6.043 - t^6.054 + t^7.395 + 2*t^7.406 + t^7.416 + 4*t^7.438 + 3*t^7.449 + t^7.46 + 3*t^7.47 + 4*t^7.481 + 3*t^7.492 + 2*t^7.503 + t^7.513 + 3*t^7.524 + t^7.535 + t^7.546 + t^8.865 + t^8.887 + 3*t^8.897 + 4*t^8.908 + 4*t^8.919 + 3*t^8.93 + 4*t^8.941 + 6*t^8.951 - 2*t^8.962 - 4*t^8.973 + 2*t^8.984 + t^8.995 - t^4.503/y - t^7.476/y + t^7.497/y - t^7.508/y + t^7.53/y + (2*t^8.935)/y + (2*t^8.946)/y + (2*t^8.957)/y + (2*t^8.968)/y + (5*t^8.978)/y + (4*t^8.989)/y - t^4.503*y - t^7.476*y + t^7.497*y - t^7.508*y + t^7.53*y + 2*t^8.935*y + 2*t^8.946*y + 2*t^8.957*y + 2*t^8.968*y + 5*t^8.978*y + 4*t^8.989*y | g1^14*t^2.962 + 2*g1^10*t^2.973 + g1^6*t^2.984 + (2*t^3.005)/g1^2 + t^3.016/g1^6 + g1^25*t^4.433 + g1^13*t^4.465 + g1^9*t^4.476 + g1^5*t^4.487 + g1*t^4.497 + t^4.508/g1^3 + (2*t^4.519)/g1^7 + t^4.53/g1^11 + t^4.54/g1^15 + g1^28*t^5.924 + 2*g1^24*t^5.935 + 3*g1^20*t^5.946 + g1^16*t^5.957 + 2*g1^12*t^5.968 + 4*g1^8*t^5.978 + g1^4*t^5.989 - 3*t^6. + t^6.011/g1^4 + t^6.022/g1^8 - t^6.043/g1^16 - t^6.054/g1^20 + g1^39*t^7.395 + 2*g1^35*t^7.406 + g1^31*t^7.416 + 4*g1^23*t^7.438 + 3*g1^19*t^7.449 + g1^15*t^7.46 + 3*g1^11*t^7.47 + 4*g1^7*t^7.481 + 3*g1^3*t^7.492 + (2*t^7.503)/g1 + t^7.513/g1^5 + (3*t^7.524)/g1^9 + t^7.535/g1^13 + t^7.546/g1^17 + g1^50*t^8.865 + g1^42*t^8.887 + 3*g1^38*t^8.897 + 4*g1^34*t^8.908 + 4*g1^30*t^8.919 + 3*g1^26*t^8.93 + 4*g1^22*t^8.941 + 6*g1^18*t^8.951 - 2*g1^14*t^8.962 - 4*g1^10*t^8.973 + 2*g1^6*t^8.984 + g1^2*t^8.995 - t^4.503/(g1*y) - (g1^9*t^7.476)/y + (g1*t^7.497)/y - t^7.508/(g1^3*y) + t^7.53/(g1^11*y) + (2*g1^24*t^8.935)/y + (2*g1^20*t^8.946)/y + (2*g1^16*t^8.957)/y + (2*g1^12*t^8.968)/y + (5*g1^8*t^8.978)/y + (4*g1^4*t^8.989)/y - (t^4.503*y)/g1 - g1^9*t^7.476*y + g1*t^7.497*y - (t^7.508*y)/g1^3 + (t^7.53*y)/g1^11 + 2*g1^24*t^8.935*y + 2*g1^20*t^8.946*y + 2*g1^16*t^8.957*y + 2*g1^12*t^8.968*y + 5*g1^8*t^8.978*y + 4*g1^4*t^8.989*y |
Deformation
Here is the data for the deformed fixed points from the chosen fixed point.
# | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from Other Seed Theories
Here is a list of equivalent fixed points from other gauge theories.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|
Equivalent Fixed Points from the Same Seed Theory
Below is a list of equivalent fixed points from the same seed theories.
id | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | More Info. | Rational |
---|
Previous Theory
The previous fixed point before deforming to get the chosen fixed point.
# | Theory | Superpotential | Central Charge $a$ | Central Charge $c$ | Ratio $a/c$ | $R$-charges | Superconformal Index | More Info. | Rational |
---|---|---|---|---|---|---|---|---|---|
55322 | SU2adj1nf2 | ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{2}\phi_{1}^{2}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}q_{2}\tilde{q}_{1}$ + ${ }M_{4}M_{6}$ | 0.6919 | 0.8476 | 0.8162 | [M:[1.0153, 1.0031, 0.9847, 0.9908, 0.9969, 1.0092], q:[0.4954, 0.4893], qb:[0.5015, 0.5199], phi:[0.4985]] | t^2.954 + t^2.972 + 2*t^2.991 + t^3.028 + t^3.046 + t^3.064 + t^4.431 + t^4.449 + 2*t^4.468 + t^4.486 + t^4.505 + t^4.523 + t^4.541 + t^4.56 + t^4.615 + 2*t^5.945 + t^5.963 + 2*t^5.982 - 2*t^6. - t^4.495/y - t^4.495*y | detail |