Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56936 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{5}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{4}M_{5}$ + ${ }M_{4}M_{6}$ + ${ }M_{7}\phi_{1}q_{2}^{2}$ 0.7178 0.9125 0.7865 [M:[1.0852, 0.7445, 0.7445, 1.0852, 0.9148, 0.9148, 0.6814], q:[0.4842, 0.4306], qb:[0.7713, 0.4842], phi:[0.4574]] [M:[[4], [-12], [-12], [4], [-4], [-4], [32]], q:[[11], [-15]], qb:[[1], [11]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{7}$, ${ }M_{2}$, ${ }M_{3}$, ${ }M_{5}$, ${ }M_{6}$, ${ }\phi_{1}^{2}$, ${ }q_{1}\tilde{q}_{2}$, ${ }q_{2}\tilde{q}_{1}$, ${ }M_{7}^{2}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{7}$, ${ }M_{3}M_{7}$, ${ }\phi_{1}q_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{2}M_{3}$, ${ }M_{3}^{2}$, ${ }M_{5}M_{7}$, ${ }M_{6}M_{7}$, ${ }M_{7}\phi_{1}^{2}$, ${ }M_{7}q_{1}\tilde{q}_{2}$, ${ }M_{2}M_{5}$, ${ }M_{3}M_{5}$, ${ }M_{2}M_{6}$, ${ }M_{3}M_{6}$, ${ }M_{2}\phi_{1}^{2}$, ${ }M_{3}\phi_{1}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{3}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{5}^{2}$, ${ }M_{5}M_{6}$, ${ }M_{6}^{2}$, ${ }M_{5}\phi_{1}^{2}$, ${ }M_{6}\phi_{1}^{2}$, ${ }\phi_{1}^{4}$, ${ }M_{7}q_{2}\tilde{q}_{1}$, ${ }M_{5}q_{1}\tilde{q}_{2}$, ${ }M_{6}q_{1}\tilde{q}_{2}$, ${ }\phi_{1}^{2}q_{1}\tilde{q}_{2}$, ${ }q_{1}^{2}\tilde{q}_{2}^{2}$ ${}$ -5 t^2.044 + 2*t^2.233 + 3*t^2.744 + t^2.905 + t^3.606 + t^4.088 + 2*t^4.117 + 5*t^4.278 + 3*t^4.467 + 3*t^4.789 + t^4.949 + 6*t^4.978 + 2*t^5.139 + 6*t^5.489 + 4*t^5.65 + t^5.811 - 5*t^6. + t^6.132 + 5*t^6.322 + 6*t^6.35 + 7*t^6.511 + 4*t^6.7 + 3*t^6.833 + 3*t^6.861 + t^6.993 + 14*t^7.022 + 5*t^7.183 + 7*t^7.211 - 3*t^7.372 + t^7.533 + 4*t^7.694 + 12*t^7.722 + t^7.855 + 5*t^7.883 - 5*t^8.044 - t^8.073 + t^8.176 - t^8.233 + 5*t^8.366 + 10*t^8.394 + 15*t^8.555 + 4*t^8.584 + t^8.716 - 8*t^8.744 + 3*t^8.877 - 8*t^8.905 + 5*t^8.934 - t^4.372/y - t^6.416/y - (2*t^6.606)/y - t^7.117/y + (2*t^7.278)/y + t^7.467/y + t^7.628/y + (3*t^7.789)/y + t^7.949/y + (6*t^7.978)/y + (4*t^8.139)/y + t^8.328/y - t^8.46/y + (3*t^8.489)/y + (2*t^8.65)/y - t^8.839/y - t^4.372*y - t^6.416*y - 2*t^6.606*y - t^7.117*y + 2*t^7.278*y + t^7.467*y + t^7.628*y + 3*t^7.789*y + t^7.949*y + 6*t^7.978*y + 4*t^8.139*y + t^8.328*y - t^8.46*y + 3*t^8.489*y + 2*t^8.65*y - t^8.839*y g1^32*t^2.044 + (2*t^2.233)/g1^12 + (3*t^2.744)/g1^4 + g1^22*t^2.905 + t^3.606/g1^14 + g1^64*t^4.088 + (2*t^4.117)/g1^6 + 5*g1^20*t^4.278 + (3*t^4.467)/g1^24 + 3*g1^28*t^4.789 + g1^54*t^4.949 + (6*t^4.978)/g1^16 + 2*g1^10*t^5.139 + (6*t^5.489)/g1^8 + 4*g1^18*t^5.65 + g1^44*t^5.811 - 5*t^6. + g1^96*t^6.132 + 5*g1^52*t^6.322 + (6*t^6.35)/g1^18 + 7*g1^8*t^6.511 + (4*t^6.7)/g1^36 + 3*g1^60*t^6.833 + (3*t^6.861)/g1^10 + g1^86*t^6.993 + 14*g1^16*t^7.022 + 5*g1^42*t^7.183 + (7*t^7.211)/g1^28 - (3*t^7.372)/g1^2 + g1^24*t^7.533 + 4*g1^50*t^7.694 + (12*t^7.722)/g1^20 + g1^76*t^7.855 + 5*g1^6*t^7.883 - 5*g1^32*t^8.044 - t^8.073/g1^38 + g1^128*t^8.176 - t^8.233/g1^12 + 5*g1^84*t^8.366 + 10*g1^14*t^8.394 + 15*g1^40*t^8.555 + (4*t^8.584)/g1^30 + g1^66*t^8.716 - (8*t^8.744)/g1^4 + 3*g1^92*t^8.877 - 8*g1^22*t^8.905 + (5*t^8.934)/g1^48 - t^4.372/(g1^2*y) - (g1^30*t^6.416)/y - (2*t^6.606)/(g1^14*y) - t^7.117/(g1^6*y) + (2*g1^20*t^7.278)/y + t^7.467/(g1^24*y) + (g1^2*t^7.628)/y + (3*g1^28*t^7.789)/y + (g1^54*t^7.949)/y + (6*t^7.978)/(g1^16*y) + (4*g1^10*t^8.139)/y + t^8.328/(g1^34*y) - (g1^62*t^8.46)/y + (3*t^8.489)/(g1^8*y) + (2*g1^18*t^8.65)/y - t^8.839/(g1^26*y) - (t^4.372*y)/g1^2 - g1^30*t^6.416*y - (2*t^6.606*y)/g1^14 - (t^7.117*y)/g1^6 + 2*g1^20*t^7.278*y + (t^7.467*y)/g1^24 + g1^2*t^7.628*y + 3*g1^28*t^7.789*y + g1^54*t^7.949*y + (6*t^7.978*y)/g1^16 + 4*g1^10*t^8.139*y + (t^8.328*y)/g1^34 - g1^62*t^8.46*y + (3*t^8.489*y)/g1^8 + 2*g1^18*t^8.65*y - (t^8.839*y)/g1^26


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55277 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}\phi_{1}^{2}$ + ${ }M_{1}M_{5}$ + ${ }\phi_{1}\tilde{q}_{1}^{2}$ + ${ }M_{4}M_{5}$ + ${ }M_{4}M_{6}$ 0.697 0.8721 0.7992 [M:[1.0862, 0.7414, 0.7414, 1.0862, 0.9138, 0.9138], q:[0.4871, 0.4267], qb:[0.7716, 0.4871], phi:[0.4569]] 2*t^2.224 + 3*t^2.741 + t^2.923 + t^3.595 + t^3.931 + 2*t^4.112 + 3*t^4.293 + 3*t^4.448 + 6*t^4.965 + 2*t^5.147 + 6*t^5.483 + 3*t^5.664 + t^5.845 - 5*t^6. - t^4.371/y - t^4.371*y detail