Landscape




$a$ =

$c$ =

$\leq a \leq$

$\leq c \leq$

id =





Chosen Fixed Point

Here is the data for the chosen fixed point.
$F_{UV}$ represents the flavor symmetries in the UV Lagrangian, and $F_{IR}$ represents the flavor symmetries in the IR. $F_{UV}$ and $F_{IR}$ can differ due to accidental symmetry enhancement.
The number of marginal operators, $n_{marginal}$, minus the dimension of flavor symmetries in IR, $|F_{IR}|$, corresponds to the coefficient of $t^6$ in the superconformal index.

#TheorySuperpotentialCentral charge $a$Central charge $c$Ratio $a/c$Matter field: $R$-chargeU(1) part of $F_{UV}$Rank of $F_{UV}$Rational
56925 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}\phi_{1}^{2}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ + ${ }M_{7}\phi_{1}q_{1}^{2}$ 0.5829 0.7351 0.7929 [M:[1.2885, 0.9934, 0.7115, 0.7246, 1.0066, 1.141, 0.8459], q:[0.3623, 0.3492], qb:[0.6443, 0.9262], phi:[0.4295]] [M:[[-6], [14], [6], [-22], [-14], [4], [24]], q:[[-11], [17]], qb:[[-3], [5]], phi:[[-2]]] 1
Relevant OperatorsMarginal Operators$n_{marginal}$$-$$|F_{IR}|$Superconformal IndexRefined index
${}M_{3}$, ${ }M_{4}$, ${ }M_{7}$, ${ }M_{2}$, ${ }M_{5}$, ${ }\phi_{1}q_{2}^{2}$, ${ }M_{6}$, ${ }\phi_{1}q_{1}q_{2}$, ${ }M_{1}$, ${ }M_{3}^{2}$, ${ }\phi_{1}q_{2}\tilde{q}_{1}$, ${ }M_{3}M_{4}$, ${ }\phi_{1}q_{1}\tilde{q}_{1}$, ${ }M_{4}^{2}$, ${ }M_{3}M_{7}$, ${ }M_{4}M_{7}$, ${ }\tilde{q}_{1}\tilde{q}_{2}$, ${ }M_{7}^{2}$, ${ }M_{2}M_{3}$, ${ }\phi_{1}q_{2}\tilde{q}_{2}$, ${ }M_{2}M_{4}$, ${ }M_{3}M_{5}$, ${ }\phi_{1}\tilde{q}_{1}^{2}$, ${ }\phi_{1}q_{1}\tilde{q}_{2}$, ${ }M_{4}M_{5}$, ${ }M_{2}M_{7}$, ${ }M_{3}\phi_{1}q_{2}^{2}$, ${ }M_{3}M_{6}$, ${ }M_{5}M_{7}$, ${ }M_{4}\phi_{1}q_{2}^{2}$, ${ }M_{4}M_{6}$, ${ }M_{4}\phi_{1}q_{1}q_{2}$, ${ }M_{7}\phi_{1}q_{2}^{2}$, ${ }M_{2}^{2}$, ${ }M_{6}M_{7}$, ${ }M_{7}\phi_{1}q_{1}q_{2}$ ${}$ -1 t^2.134 + t^2.174 + t^2.538 + t^2.98 + t^3.02 + t^3.384 + 2*t^3.423 + t^3.866 + t^4.269 + t^4.308 + t^4.348 + t^4.672 + 2*t^4.711 + t^5.075 + t^5.115 + 2*t^5.154 + t^5.193 + 2*t^5.518 + 3*t^5.557 + t^5.597 + t^5.921 + 2*t^5.961 - t^6. + t^6.039 + t^6.364 + 3*t^6.403 + t^6.443 + t^6.482 + t^6.521 + t^6.767 + 2*t^6.807 + 2*t^6.846 + t^6.885 + t^7.21 + 2*t^7.249 + t^7.289 + t^7.328 + t^7.367 + t^7.613 + 2*t^7.652 + 3*t^7.692 + 2*t^7.731 + t^7.771 + 2*t^8.056 + 3*t^8.095 - 2*t^8.174 + t^8.213 + t^8.459 + 3*t^8.498 + 2*t^8.577 + t^8.656 + t^8.695 + 2*t^8.902 + 4*t^8.941 - t^8.98 - t^4.289/y - t^6.462/y - t^6.826/y + t^7.308/y + t^7.672/y + t^7.711/y + t^7.751/y + (2*t^8.115)/y + (2*t^8.154)/y + t^8.193/y + (2*t^8.518)/y + (4*t^8.557)/y + (2*t^8.597)/y - t^8.636/y + t^8.921/y + (2*t^8.961)/y - t^4.289*y - t^6.462*y - t^6.826*y + t^7.308*y + t^7.672*y + t^7.711*y + t^7.751*y + 2*t^8.115*y + 2*t^8.154*y + t^8.193*y + 2*t^8.518*y + 4*t^8.557*y + 2*t^8.597*y - t^8.636*y + t^8.921*y + 2*t^8.961*y g1^6*t^2.134 + t^2.174/g1^22 + g1^24*t^2.538 + g1^14*t^2.98 + t^3.02/g1^14 + g1^32*t^3.384 + 2*g1^4*t^3.423 + t^3.866/g1^6 + g1^12*t^4.269 + t^4.308/g1^16 + t^4.348/g1^44 + g1^30*t^4.672 + 2*g1^2*t^4.711 + g1^48*t^5.075 + g1^20*t^5.115 + (2*t^5.154)/g1^8 + t^5.193/g1^36 + 2*g1^38*t^5.518 + 3*g1^10*t^5.557 + t^5.597/g1^18 + g1^56*t^5.921 + 2*g1^28*t^5.961 - t^6. + t^6.039/g1^28 + g1^46*t^6.364 + 3*g1^18*t^6.403 + t^6.443/g1^10 + t^6.482/g1^38 + t^6.521/g1^66 + g1^64*t^6.767 + 2*g1^36*t^6.807 + 2*g1^8*t^6.846 + t^6.885/g1^20 + g1^54*t^7.21 + 2*g1^26*t^7.249 + t^7.289/g1^2 + t^7.328/g1^30 + t^7.367/g1^58 + g1^72*t^7.613 + 2*g1^44*t^7.652 + 3*g1^16*t^7.692 + (2*t^7.731)/g1^12 + t^7.771/g1^40 + 2*g1^62*t^8.056 + 3*g1^34*t^8.095 - (2*t^8.174)/g1^22 + t^8.213/g1^50 + g1^80*t^8.459 + 3*g1^52*t^8.498 + (2*t^8.577)/g1^4 + t^8.656/g1^60 + t^8.695/g1^88 + 2*g1^70*t^8.902 + 4*g1^42*t^8.941 - g1^14*t^8.98 - t^4.289/(g1^2*y) - t^6.462/(g1^24*y) - (g1^22*t^6.826)/y + t^7.308/(g1^16*y) + (g1^30*t^7.672)/y + (g1^2*t^7.711)/y + t^7.751/(g1^26*y) + (2*g1^20*t^8.115)/y + (2*t^8.154)/(g1^8*y) + t^8.193/(g1^36*y) + (2*g1^38*t^8.518)/y + (4*g1^10*t^8.557)/y + (2*t^8.597)/(g1^18*y) - t^8.636/(g1^46*y) + (g1^56*t^8.921)/y + (2*g1^28*t^8.961)/y - (t^4.289*y)/g1^2 - (t^6.462*y)/g1^24 - g1^22*t^6.826*y + (t^7.308*y)/g1^16 + g1^30*t^7.672*y + g1^2*t^7.711*y + (t^7.751*y)/g1^26 + 2*g1^20*t^8.115*y + (2*t^8.154*y)/g1^8 + (t^8.193*y)/g1^36 + 2*g1^38*t^8.518*y + 4*g1^10*t^8.557*y + (2*t^8.597*y)/g1^18 - (t^8.636*y)/g1^46 + g1^56*t^8.921*y + 2*g1^28*t^8.961*y


Deformation

Here is the data for the deformed fixed points from the chosen fixed point.

#SuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from Other Seed Theories

Here is a list of equivalent fixed points from other gauge theories.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational


Equivalent Fixed Points from the Same Seed Theory

Below is a list of equivalent fixed points from the same seed theories.

id Theory Superpotential Central Charge $a$ Central Charge $c$ Ratio $a/c$ $R$-charges More Info. Rational


Previous Theory

The previous fixed point before deforming to get the chosen fixed point.

#TheorySuperpotentialCentral Charge $a$ Central Charge $c$ Ratio $a/c$$R$-chargesSuperconformal IndexMore Info.Rational
55280 SU2adj1nf2 ${}M_{1}q_{1}q_{2}$ + ${ }M_{2}q_{1}\tilde{q}_{1}$ + ${ }M_{3}q_{1}\tilde{q}_{2}$ + ${ }M_{4}q_{2}\tilde{q}_{2}$ + ${ }M_{1}M_{3}$ + ${ }M_{5}q_{2}\tilde{q}_{1}$ + ${ }M_{2}M_{5}$ + ${ }M_{6}\phi_{1}^{2}$ + ${ }\phi_{1}\tilde{q}_{1}\tilde{q}_{2}$ 0.5708 0.7142 0.7992 [M:[1.2793, 1.015, 0.7207, 0.6907, 0.985, 1.1471], q:[0.3454, 0.3754], qb:[0.6396, 0.9339], phi:[0.4264]] t^2.072 + t^2.162 + t^2.955 + t^3.045 + t^3.351 + 2*t^3.441 + t^3.531 + t^3.838 + t^4.144 + t^4.234 + t^4.324 + t^4.721 + t^5.027 + 2*t^5.117 + t^5.207 + t^5.424 + 2*t^5.514 + 2*t^5.604 + t^5.694 + t^5.91 - t^6. - t^4.279/y - t^4.279*y detail